
The Informal Guide to the
Virtual Network Embedding MIP Creator

TU Berlin, Germany

Matthias Rost
mrost@inet.tu-berlin.de

What is the VNetEMC?

The Virtual Network Embedding MIP Creator (VNetEMC) is a framework for creating Mixed-
Integer Programs (MIP) to solve the Virtual Network Embedding Problems (VNEP) while al-
lowing for a large variety of types of models. The VNetEMC supports the modeling of

• (un)directed substrate networks with (un)capacitated nodes and (un)capacitated links,

• three main different flow models: splittable flow, unsplittable flow and confluent flow,

• further extensions to e.g., (dis)allow the collocation of virtual nodes or support for per-
forming access control (i.e., selecting a “good” subset of virtual networks).

As the VNetEMC can be easily extended, a multitude of objective functions can be imple-
mented.

By using XML data representation and exporting MIP models as human-readable GNU Math-
Prog modeling language (GMPL) models, the VNetEMC allows for the concise presentation of
computational results and ensures a high confidence in the correctness of the results.

Besides the creation of GMPL models and the derivation of executable .lp files, we provide
a basic API to generate VNEP scenarios together with scripts to execute them.

The VNetEMC provides for an own XML solution format, such that raw solutions for the
.lp files (generated e.g.,by Gurobi) can be again parsed to a human-readable format. This not
only allows for a verification of the correctness of the results (and the models), but also enables
the dynamic creation of new scenarios given solutions to previous ones.

2

Contents

I. Theory 5

1. Supported Embedding Models 6
1.1. Substrate and VNet Model(s) . 6
1.2. Semantics of (Un)directed Substrates and (Un)directed VNets 6
1.3. Model Extensions . 8
1.4. Objective Functions . 9
1.5. Flow Models . 9

2. Complexity of Models 11
2.1. Notation . 11
2.2. Complexity of the Basic Model . 11
2.3. Complexity of Extensions . 12
2.4. Complexity of Flow Models . 12

3. Modeling Opportunities 14
3.1. Modeling Virtual (Oversubscribed) Clusters 14
3.2. An “Ultimatively” General Substrate Model 15

II. Practice 17

4. Getting Started 18
4.1. Contents of the Project . 18
4.2. Required Software . 18
4.3. Setting up VNetEMC . 19
4.4. Running the Test Models . 20

5. Design Philosophy 21

6. Main Components 22
6.1. XML Data Representation . 22
6.2. Generation of XML Scenarios . 22
6.3. Converting XML Scenarios to MIP Models 23
6.4. Generation of XML Solution Files . 23
6.5. Other Important Features . 23

3

7. Extending the VNetEMC: How to introduce a New Objective Function 25
7.1. Writing a GMPL-Model Template . 25
7.2. Extending the scenario.xsd . 26
7.3. Developing a Generator for the Objective . 26
7.4. Enabling GMPL Export . 27

III. Appendix 28

A. Overview on Files Generated by the VNetEMC 29

B. Common Input and Output of the GMPL Models 30
B.1. Input . 30
B.2. Output . 30

4

Part I.

Theory

5

1. Supported Embedding Models

In this section we will shortly outline the supported embedding models, i.e. which variants of
the Virtual Network Embedding Problem (VNEP) the VNetEMC supports.

1.1. Substrate and VNet Model(s)

The literature on the VNEP considers multiple different types of substrates and virtual networks.
The main dimensions are the following:

Directed vs. Undirected Substrates As the VNEP is a graph-theoretic problem, some re-
searchers consider directed or undirected substrate networks. We support both these mod-
els.

Directed vs. Undirected VNets Analogously, one may consider directed and undirected
VNets. However, as we argue below, undirected VNets are rather uncommon, and we
hence do not support undirected VNets.

Node and Link Resources While nodes and links may have multiple different resource types
(e.g., storage, CPU, bandwidth, latency, . . .), we consider only a single node and a single
link resource. Additional resources could however be introduced easily.

Capacitated vs. Uncapactiated Substrates Early work on the VNEP typically consid-
ered the load minimization problem, without enforcing capacity constraints on substrate
nodes and substrate links. We therefore allow for both (un)capacitated substrate nodes as
well as (un)capacitated substrate links.

Capacitated vs. Uncapacitated VNets In contrast, nodes and links of VNets must always
be attributed with a requested capacity. While it would be generally possible to allow for
uncapacitated nodes or links, we argue that this would make little sense, as the core reason
to use the concept of VNets is the ability to specify the amount of resources requested.

1.2. Semantics of (Un)directed Substrates and (Un)directed
VNets

To better understand the semantics of (un)directed topologies in the VNEP, we will first discuss
the semantics of (un)directed substrate topologies:

Directed Substrate Using directed substrate networks, each link can be considered as a sin-
gle simplex channel between nodes with an own capacity. This directed model is appro-
priate in most scenarios, as the vast majority of (wired) links are full-duplex and therefore

6

represent two independent simplex lines. Furthermore, using only directed links, we can
model that a substrate node s1 may communicate with s2 (by including link (s1, s2))
while s2 may not communicate with s1 (by not including the link (s2, s1)). This may be
applicable e.g.,in wireless transmissions where s1 is a powerful sender while s2 is not as
powerful.

Undirected Substrate In contrast, in undirected substrates an edge {s1, s2} indicates that
both connected nodes may communicate with each other. If furthermore a capacity for
an undirected link is given, then we must understand the undirected substrate edge as a
shared resource: while s1 may send data towards s2 and s2 may send data towards s1,
the sum of exchanged data must not exceed the links capacity. Therefore, the undirected
substrate network (with capacities) can be understood as a fully directed network, i.e.,
each undirected edge is represented using two opposingly directed edges, in which the
flow along the pair of opposingly directed edges is upper bounded.
Undirected substrates may therefore be used to model e.g.,radio links (using the same
frequency)

In contrast to the above discussion, we will now argue that modeling undirected VNets ex-
plicitly makes only little sense. We assume that by using an undirected virtual link {v1, v2} with
capacity c, a duplex connection is modeled such that both nodes can communicate with each
other (in parallel) such that the total amount of flow sent between the nodes is less than or equal
to c.

Undirected VNets on Undirected Substrates In this setting, representing the undirected
virtual link {v1, v2} as directed link (v1, v2) suffices: as the substrate is undirected, em-
bedding the directed virtual link (v1, v2) will allocate resources on both "directions" of
used undirected substrate edges. Therefore, any flow in the substrate between v1 and v2
of capacity c will readily allow for duplex communication of capacity c, such that v1 may
send flow f1 towards v2 while v2 may send flow f2 towards v1 as long as f1 + f2 ≤ c.
Therefore, this case does not need to be modeled explicitly.

Undirected VNets on Directed Substrates Under the assumption that an undirected vir-
tual link should be embedded as a single entity, embedding undirected virtual links on
directed substrates may not be possible: assume that the undirected virtual link is to be
embedded on a ring substrate (with clockwise links only), then no single path connect-
ing v1 and v2 allows for the simultaneously communication of v1 with v2 and vice versa.
Therefore, in this setting, undirected virtual links need to be represented using the two
directed links (v1, v2) and (v2, v1). Assume that (v1, v2) is embedded by flow f1 and
(v2, v1) is embedded by f2 and that the capacity of {v1, v2} is c, then on any directed sub-
strate edge e used by f1 and f2, the maximal allocations needed are min(f1(e)+f2(e), c).
While such a flow model could indeed be introduced, we conclude that in this setting two
distinct virtual links are necessitated such that we do not allow for undirected VNets.

7

1.3. Model Extensions

While the VNetEMC allows for multiple substrate and flow types, we also include the following
further concepts.

1.3.1. Access Control

The task of the VNEP can be coarsely subdivided into access control and load balancing objec-
tives. In access control scenarios (with hard substrate capacities), the main question is “which
VNets shall be embedded?”. On the other hand, given a set of VNets that are either known to
be embeddable or not considering substrate capacities, the other main question is “how can the
provider optimize the allocations?”. With respect to this question, the objective can be e.g.,to
minimize substrate allocations, or to spread the load the best possible way, or to save energy by
disabling substrate links and nodes.

All our models generally include access control; however, for each VNet a flag can be set,
indicating that the VNet must be embedded. Therefore, both access control and allocation opti-
mization scenarios (and mixtures thereof) can be modeled.

1.3.2. Disjoint Node Mappings

Most literature on the VNEP considers only node mappings with disjoint node mappings (per
VNet), such that given a VNet all virtual nodes must be mapped to distinct substrate nodes.
While this may be sufficient in wide-area scenarios or when explicit replication is requested,
mapping multiple virtual nodes on the same substrate node in a data center makes sense, as
e.g.,substrate nodes may represent a whole server rack with (unlimited) IPC capabilities. In a
recent paper by Carlo FÃijrst and Stefan Schmid, it was also shown that such collocation of
virtual nodes may significantly reduce resource allocations in the substrate as connected nodes
that are collocated do not require bandwidth allocations on links.

To handle both cases, we again allow to specify a flag, indicating whether disjoint node map-
pings are required.

1.3.3. Link Groupings Optimization

All our flow models (see next section) make use of so called link groupings to potentially reduce
the number of variables and constraints used significantly. To understand the concept, consider
a directed star VNet consisting of one center node v0 and n nodes connected to it {v1, ..., vn}.
While “standard” MIP formulations would introduce flow variables for each of the n links,
only one set of flow variables suffices: each multi-commodity flow with n senders and a single
receiver can be easily modeled by a standard s − t flow by introducing an (imaginary) super
source o which is connected to all nodes around the center. By setting the capacacity of (o, vi)
to the capacity of the original link c(vi, v0) and requiring o to send

∑n
i=1 c(vi, v0) much flow,

this reduces to a simple s− t flow problem.
Similarly, the same holds for an outgoing star where the center is connected to all other nodes:

we introduce an (imaginary) super sink and connect all nodes (except the center) to it. Using
essentially construction as above, again n flows can be represented using a single flow.

8

This optimization can therefore reduce the number of flow variables by as much as the number
of virtual links. The worst case however is the directed cycle: no matter how links are “grouped”,
one always needs as much link groups (and therefore flows) as links.

1.3.4. Node Placement Restrictions

Especially when applying the VNEP in the wide-are setting, e.g.,for optimal service-deployment,
it is reasonable to assume that virtual nodes may not be mapped arbitrarily, but virtual nodes must
be mapped on regions of substrate nodes, such that e.g.,all customers within some distance can
be served by any substrate node within the region.

Another reason to consider node placement restrictions is the simple fact, that the VNEP is
exceptionally hard when the substrate is large and virtual nodes can be mapped on any substrate
node.

Again, to be as general as possible, node placement restrictions can be defined for each virtual
node independently. If no such restrictions are defined, then the virtual node can be mapped on
any substrate node.

1.4. Objective Functions

While we shortly mentioned possible objectives for the VNEP, we have implemented only a
single one (, yet). The single objective currently implemented is to minimize migration costs:
For each virtual node v and each substrate node s (that v can be mapped on) a migration cost
c(v, s) ≥ 0 is given. The task is to find an embedding minimizing the sum of incurred migration
costs. This objective could e.g.,be used to study the benefits of allowing migrations:

• Initially VNets V = {V1, V2, ..., Vn} are embedded upon the substrate.

• Given some new set of VNets V ′ = {Vn+1, ..., Vn+k}, we can now answer the following
question: how many migration costs are necessary to embed all of the k new VNets (if all
can be embedded)?

As developing, investigating and comparing further objectives is of high interest, we detail in
Chapter 7 how further objectives can be introduced to the VNetEMC.

1.5. Flow Models

While all formulations for the VNEP assume the same mapping model of virtual nodes onto
substrate nodes (namely: each virtual node needs to be mapped), embedding virtual links can be
done in several ways:

Splittable Flow This is the arguably most general model to embed virtual links: each virtual
link can be mapped on a set of paths, such that each path carries some (arbitrary amount
of) flow; the sum of these flow values must yield the required bandwidth.

9

Unsplittable Flow In this model, each virtual link must be embedded as a single path, such
that on each substrate link along the path the whole bandwidth of the virtual link needs to
be reserved.

Unsplittable Uniform Flow Assuming that all virtual links have the same requested band-
width, the unsplittable flow model can be described using less binary variables. Therefore,
we introduce an own flow type for this optimized version of unsplittable flows.

Confluent Flow per VNet While in the unsplittable flow model, each virtual link can be
mapped using an arbitrary path, the confluent flow model (per VNet) requires that the
flows are routable using routing tables (for each VNet):

• Each substrate node holds a simple routing table for each substrate destination and
each VNet.

• Flow destined for a substrate node may only be forwarded on a single link (for each
VNet).

• The above implies, that for each substrate node destination (for each VNet) there
exists a routing tree, such that flow must be routed along it.

Globally Confluent Flow The same as the confluent flow per VNet model, but the routing
tables are not multiplexed using the VNets, but are global: For each substrate destination,
there exists a single routing in the substrate network, such that all flow (from all VNets)
destined to the same substrate node must follow the same routing tree.

The above introduced flow models, correspond to different degrees of virtualization support
for links. The globally confluent flow model presents standard routing (e.g., IP forwarding based
on destination address prefixes) without any virtualization support. The per-VNet confluent
flow model could represent a VNet based on IP protocol stacks. Unsplittable flow models are
appropriate in MPLS or OpenFlow contexts. Lastly, the most general model of splittable flow,
could (hypothetically) be realized by using IP-based VNets with a Multipath-TCP transport
layer.

In the next chapter, we compare the “complexity” of the different flow models by means of
comparing the number of variables needed.

10

2. Complexity of Models

In this chapter we consider the complexity of the VNEP formulations as introduced in the above
chapter. As complexity measure, we use the number of linear, binary and integer variables and
the number of constraints.

Even though we allow for numerous possible models, all of our models only introduce as
many constraints and variables as necessary. There exists however one case, in which more
variables and constraints are generated than necessary: for some flow models we introduce
flow allocation variables that are essentially not needed. We however include them such that in
each model flow allocations along edges can be accessed (within the models and also from the
outside, when reading the solver’s solution files) in an uniform fashion. Importantly, as these
flow allocation variables are set (with an equality constraint) the solver’s presolver will (at least
in the test instances) substitute these variables with their defining term and remove the equality
constraints.

2.1. Notation

|EV | denotes the total number of virtual links, |ES | denotes the number of substrate links,
|VV | denotes the total number of virtual nodes and |VS | denotes the number of substrate nodes;
|Groups(EV)| denotes the total number of link groups needed to represent the virtual links, and
|Groups+(EV)| indicates that only link groups with a common virtual destination are consid-
ered; |V| denotes the number of VNets, |dest(VV)| denotes the number of virtual nodes with
incoming links and |dest(VS)| denotes the overall number of substrate nodes that these virtual
nodes can be mapped on.

2.2. Complexity of the Basic Model

We consider in the following the basic model without any extensions. To generate a feasible
model for the VNEP a flow model must be included.

Variable Type # Binary

Deciding whether requests are embeddeed |V|a

Guarantee node mapping |VV |

aIf access control is disabled, then these are set to 1 and
can be removed by the presolver

Constraint Type # Constraints

Node mapping |VV | · |dest(VS)|

11

2.3. Complexity of Extensions

2.3.1. Substrate Node Capacities

No additional variables are needed.
Constraint Type # Constraints

Bounding allocations on substrate nodes |VS |

2.3.2. Substrate Link Capacities

No additional variables are needed.
Constraint Type # Constraints

Bounding allocations on substrate link |ES |

2.3.3. Access Control

No additional variables are needed..
Constraint Type # Constraints

Disabling Access control |V|a

aShould be removed by the presolver.

2.3.4. Disjoint Node Mapings

No additional variables are needed.
Constraint Type # Constraints

Requiring Disjoing Node Mappings |V| · |VS |

2.3.5. Node Placement Restrictions

No additional variables or constraints are needed.

2.4. Complexity of Flow Models

Table 2.1 presents the number of variables necessary for representing flows while Table 2.2
displays the number of needed constraints. Note that for the unsplittable, the globally confluent
and the confluent per VNet flow models, the presolver will (probably) remove introduced
variables and constraints.
In Table 2.1 we have ordered the flow models according to their expected hardness: the
splittable flow model can be solved in polynomial time, while confluent flow models require
not only a large number of binary but also a large number of linear variables.

12

Considering the number of needed constraints, the complexities are similarly ordered.
However, the confluent models introduce an enormous amount of additional constraints.

Flow Model # Linear # Binary # Integer

Splittable Flow |Groups(EV)| · |ES | 0 0

Unsplittable Uniform Flow 0 0 |Groups(EV)| · |ES |

Unsplittable Flow (|Groups(EV)| · |ES |)a |EV | · |ES | 0

Globally Confluent Flow
(
|Groups+(EV)| · |ES |

)a

+
|dest(VV)|·|dest(VS)|·|ES |

|dest(VS)| · |ES | 0

Confluent Flow per VNet |
(
Groups+(EV)| · |ES |

)a

+
|dest(VV)|·|dest(VS)|·|ES |

|V| · |dest(VS)| · |ES | 0

aThese variables should be removed in the presolver of the solver.

Table 2.1.: Number of needed {linear, binary, integer } variables for representing flow models.

Flow Model # Constraints

Splittable Flow |Groups(EV)| · |ES |

Unsplittable Uniform Flow |Groups(EV)| · |ES |

Unsplittable Flow (|Groups(EV)| · |ES |)a + |EV | · |ES |

Globally Confluent Flow
(
|Groups+(EV)| · |ES |

)a + |dest(VS)| · |VS | +
3 · |dest(VV)| · |dest(VS)| · |ES | + |Groups(EV)| · |dest(VV)| · |ES |

Confluent Flow per VNet
(
|Groups+(EV)| · |ES |

)a + |dest(VS)| · |VS | +
3 · |dest(VV)| · |dest(VS)| · |ES | + |Groups(EV)| · |dest(VV)| · |ES |

aThese constraints should be removed by the presolver of the solver.

Table 2.2.: Number of needed constraints for representing the flow models.

13

3. Modeling Opportunities

In Chapter 1 we have presented the models that the VNetEMC may create. We will now shortly
discuss, how more complex scenarios could be either modeled using the existing model
capabilities or how the VNetEMC could be extended.

3.1. Modeling Virtual (Oversubscribed) Clusters

Hose models and virtual (oversubscribed) clusters1 as a general type of VNets have recently
been proposed also in datacenter contexts. In general, virtual (oversubscribed) clusters can be
considered as an abstraction from the pure graph based model, as they aim at allowing to model
traffic matrices instead of pure fixed capacity topologies.

3.1.1. Virutal Clusters

A virtual cluster V C(N,B) consists of a single virtual switch and a N virtual machines that
are connected to the virtual switch with bandwidth B. Therefore, the virtual nodes (machines)
can only communicate via the virtual switch (a simple star topology). As full-duplex
communications are assumed, the virtual link is connected to each virtual machine with the
same capacity of B. In the above model (assuming that there exists an even number of virtual
machines), it is therefore possible that the first halve of virtual machines send data to the
second one at full link capacity of B, while the second halve sends data to the first one at full
link capacity of B. However, if e.g. all but one virtual machines try to communicate with a
single virtual machine, then the available capacity at which all VMs may send/receive data is
limited by B.

3.1.2. Modeling Virutal Clusters

As the virtual cluster topology is a bi-directed star with fixed (maximal) capacities, virtual
clusters can be readily be specified by the means provided by the VNetEMC. However, as it
may e.g. be required that virtual switches can only be mapped on switches of the substrate, it
should be possible to mark virtual nodes and substrate nodes as representing (virtual) switches.
As this means only introducing a flag into the data model, this can be done without affecting
any other part of the VNetEMC. Given this data model extension, it would then be easy to write
a special node placement restriction, such that virtual switches can (a priori) only be mapped on
substrate switches.

1see e.g. Ballani, H., Costa, P., Karagiannis, T., & Rowstron, A. I. (2011, August). Towards predictable datacenter
networks. In SIGCOMM (Vol. 11, pp. 242-253).

14

However, if we wanted to allow for the mapping of virtual switches onto non-switch substrate
nodes as well, then further extensions might be necessary. Assuming e.g. that a substrate node
emulating the functionality of a (virtual) switch requires a certain amount of node resources
(e.g. CPU), the model could be adapted in the following way:

• First the information on virtual / substrate nodes should be accessible in the GMPL
model.

• Instead of using the standard node capacity model2 a custom capacity model could be
derived for this scenario, such that substrate switches are not capacitated (requiring of
course that general virtual nodes cannot be mapped on substrate switches) but only
normal substrate nodes are capacited.

3.1.3. Virtual Oversubscribed Clusters

The concept of virtual oversubscribed clusters extends the concept of virtual clusters by
allowing multiple virtual cluster groups that are connected by a tree (of height two) of virtual
switches, where the virtual machines may communicate with the virtual switch they are
connected to at full speed B, but the bandwidth of these virtual switches to the root virtual
switch is limited to a fraction of the sum of maximal bandwidths with which the virtual
switches connected to it may exchange data. Concretely, in addition to N and B, the Virtual
Oversubscribed Cluster specifies an oversubscription factor O.
This concept can be introduced in the same way as the virtual clusters.

3.2. An “Ultimatively” General Substrate Model

While the VNetEMC currently allows for using either only directed or undirected edges and
similarly either all substrate nodes / links are capacitated or uncapacitated, the user might wish
to consider scenarios where some of the edges are directed and the remaining edges are
capacitated or in which only some nodes or links are capacitated. We will now shortly outline
how such a general model should be included in the VNetEMC.
First note that undirected edges correspond to two opposingly directed edges. Therefore,
undirected edges can already be modeled using directed edges only. Considering the
enforcement of capacity constraints on undirected edges using a fundamentally directed
substrate, we propose the following approach:

• Given a directed substrate (possibly with capacities on the directed substrate links), the
user can specify additional capacity constraints for sets of substrate links.

• To model an undirected substrate edge, such an additional capacity constraint needs to be
added to the scenario.

• Using this approach the existing XML and GMPL data models would not need to be
changed, which would require a major revision of the VNetEMC.

2See src/model/gmpl/extensions/SubstrateTypes/Nodes/capacitatedNodes.mod

15

Using the above approach, not only a major redesign would be avoided, but this would also
allow for modeling shared link capacities in a more general fashion. As undirected edges
basically represent two directed links with shared resources, using the above approach one
could e.g. model broadcasting domains in wireless scenarios:

• Assume a substrate of n radio stations that are connected to a single base station.

• As both the base station and the radio stations outgoing capacities are limited e.g. by the
technology or the hardware employed, both the links from the radio stations to the base
station as well as the links from the base station to the radio stations are inherently
bandwidth limited. Therefore, these should be modeled using directed, capacitated links.

• However, assuming that all nodes use the same frequency for communication, there
exists a natural capacity on the overall available capacity. Therefore, the sum of flow
along both edges directed towards the base station and away from the station, should be
upper bounded by a certain (frequency and technology dependent) capacity.

The above concept is not only applicable in wireless scenarios but could also be used to model
internal bandwidth limitations of non-blocking switches, as their maximal (internal switching)
throughput generally lies below the sum of outgoing links’ capacities.
It must be noted that the same general concept of additional capacity constraints can be
employed for substrate nodes: by limiting the overall sum of allocations on substrate nodes e.g.
power constraints could be modeled.

16

Part II.

Practice

17

4. Getting Started

In this chapter we will outline the prerequisites to running VNetEMC and how to run the test
instances.

4.1. Contents of the Project

The project-archive should contain the following directories and files:

build/ Contains Ant-scripts for generating the executable jar files for generating the test
instances as well as the create_schemes.sh shell script to generate .java files
corresponding to our XML data model.

src/ Contains the complete java source of the VNetEMC.

doc/ Contains the javadoc documentation of the VNetEMC.

.jars Precompiled java executables for generating the test instances.

.xsd Definition of our XML data model.

settings.xml File in which global and user-dependent configurations are stored.

4.2. Required Software

To successfully run VNetEMC, you will need the following:

GLPK The VNetEMC uses the GNU Mathprog modeling language (GMPL) to define
embedding models. Using GLPSOL (a LP / MIP solver) of the GNU Linear
Programming Kit these models can be easily converted into .lp files that can in turn be
read by all MIP solvers, such as Gurobi, CPLEX or SCIP. The GLPK can be obtained
from http://www.gnu.org/software/glpk/ 1 . The GLPK package also
contains the gmpl.pdf (in doc/) detailing the GMPL language to specify models.

JDK7 Our project makes slightly use of Java7 and therefore a corresponding JDK needs to be
installed.

1For the Windows operating systems see http://winglpk.sourceforge.net/

18

http://www.gnu.org/software/glpk/
http://winglpk.sourceforge.net/

(JAXB) We make extensive use of the Java Architecture for XML Binding (JAXB). Normally,
JAXB should be contained within the JDK such that no setup is necessary. If this is not
the case, the reference implementation can be obtained from
https://jaxb.java.net/ such that the corresponding .jar files only need to be
included in the build path.

Gurobi / CPLEX While GLPSOL is a fully fledged LP / MIP solver, commercial solvers as
Gurobi or CPLEX outperform GLPSOL by magnitudes. To even run the moderately
small test instances it is therefore advisable to install either of these commercial solvers.
As Gurobi has a very user friendly academic licensing approach2 and the (current)
version 5.6 clearly outperforms (the outdated) CPLEX 11.2 [most current version: 12.6]
we are currently recommending to use Gurobi (5.6). However, an evaluation of how well
CPLEX 12.6 performs versus Gurobi 5.6 would be interesting.

Operating System Our experience of running commercial MIP solvers under Windows is
very limited. Due to the good scripting support under Unix-based operating systems, our
framework is rather directed towards these operating systems. However, it might be
possible to achieve the same level of scripting automatisms under Windows and the
VNetEMC could potentially be extended to better support Windows.

4.3. Setting up VNetEMC

To set up VNetEMC you basically only need to unpack the project archive and edit the
settings.xml:

• Set <PathToStored../> to some (existing or newly created) directories on your
machine. These directories will be per default (and especially for our test instances) be
used to store generated models. These directories should be only used by VNetEMC, as
potentially hundreds of files will be generated (in sub-directories).

• Set <GMPLCommand/> such that the command can be executed. If GLPK is properly
installed (tested under Ubuntu 12.04) then the default command should work. If no
"make install" is wished, then one can of course specify the path of glpsol by hand.
Under Windows the same applies, and the default command should work when using
glpsol.exe.

• Depending on the OS and the installation, the parameters
<ExecuteGurobiCommand/> and <ExecuteCPLEXCommand/> may need to be
edited. Removing the "| tee -i .." fragment will probably allow to run (at least) gurobi
under Windows, if "gurobi.sh" is replaced by "gurobi.bat" (again, assuming that these
can be found by the shell the commands are executed in).

• The <InputScriptForGurobi/> and <InputScriptForCPLEX/> parameters
allow to specify input scripts for these solvers, such that parameters can be passed to

2Allowing to always use the newest version as well as to obtain unlimitedly many licenses.

19

https://jaxb.java.net/

these solvers. The given InputScripts are rather of exaplanatory nature and should
definitely be adapted when running experiments. However, for the test instances that use
Gurobi, the settings does not matter as all instances can be solved within a fraction of a
second.

4.4. Running the Test Models

Assuming that the path variables of the settings.xml are set correctly (to existing directories),
and that GLPK is set up correctly (with the correct 〈GMPLCommand〉 field of the
settings.xml), the following "script" can be used to generate the testScenarios, run them and
generate solution files:

java -jar generateTestRequests.jar
java -jar generateTestSubstrates.jar
java -jar generateTestScenarios.jar

(change directory to where the scenarios where created)

cd testScenarios
bash executeTest.sh

(change directory to VNetEMC root directory)

java -jar generateScenarioSolutionForTestInstances.jar

Executing generateTestRequests.jar will create two sets of requests in the directory specified
for storing the requests and executing generateTestSubstrates will generate 8 different substrate
graphs. Executing generateTestScenarios.jar then binds together the requests and substrates
under 5 different flow types, generating 40 scenarios overall (in the directory for storing
scenarios). For each scenario (-scenario.xml) a model file (.mod), a data file (.dat) and a (.lp)
file should be present. Furthermore, an input script should have been generated for each
scenario 3.
Within the testScenarios/ directory in which the scenarios are created, a executeTest.sh script
should have been created. Executing this script will solve all scenarios using Gurobi, checking
that for each model an optimal solution was found.
Lastly, using the output of Gurobi (as specified in the input script file), by executing
generateScenarioSolutionForTestInstances.jar, for each scenario a solution file
(-scenario-solution.xml) is generated; allowing to inspect the solution in an human-readable
format.

3See Chapter A for a complete list of files that are (in general) generated.

20

5. Design Philosophy

When developing a framework to generate MIPs, one may choose between three different
approaches:

• Generate the .lp files directly from scratch, i.e. that the whole model is encapsualted
within the application.

• Use the API from a solver (e.g.,Gurobi or CPLEX) or the API of a mathematical
modeling lanugage (as e.g.,AMPL or GLPK) to generate the model using the abstraction
layer of these languages.

• Instead of using an API, represent and export the model as simple text files written in an
mathematical modeling language (as e.g.,GMPL or ZIMPL).

Our framework entirely relies on the textual representation of models. With respect to the other
approaches, this has the following advantages.

Maintainability / Extensibility The VNetEMC relies on a strict separation of models and
how corresponding scenarios are generated. As parameters, variables and constraints are
defined externally and encapsulated as model file, the models are humanly
comprehensible and can be rather easily checked for correctness. Adding a new feature
to the set of model extensions can then be done separately from other parts of the model
by simply specifying a model fragment.

Consistent Presentation of Results Considering the two other approaches for generating
MIPs, our approach taken allows for a consistent presentation of computational results.
While the first two approaches only export .lp files, that are absolutely
non-comprehensible for humans, we export the model and data files together with the
.lp file. Thus, even in retrospect, the underlying model of the .lp file can easily be
grasped. This is a big advantage even over API approaches, as to understand the
underlying model the user would have to inspect the source code of the generating
application; allowing for as many different models as the VNetEMC is targeting, we
believe that even in this setting, the user can not grasp the concise model.

Fast Prototyping As we generate GMPL model files with corresponding data files, we allow
for fast prototyping. To test a new functionality, it suffices to take an existing model file
and the corresponding data file, extend the model by writing GMPL statements and
generate the model. In contrast to extending a model in the API approach, this is far less
error-prone.

21

6. Main Components

Before discussing the main components of the VNetEMC, we strongly encourage the reader to
have a look at the source of the executables for running the test instances1, as they already give
quite a good overview over the core functionality provided. Furthermore, we stress that our
framework comes with an extensive javadoc documentation, providing a high-level description
for each package and each class.

6.1. XML Data Representation

The VNetEMC relies on a pure XML representation of scenarios. While this type of
representation initially slows down development of a model, it is easily extensible and even
more importantly, human readable; in contrast to e.g.,GMPL data files, the scenario files
produced by the VNetEMC are easily comprehensible, as they allow for structured
representation of data.
Considering the effort necessary to write XML files, we employ JAXB, that automatically
generates Java classes representing XML elements according to XML schema definitions. This
allows for a concise presentation of the model in the VNetEMC.
The .xsd files defining our data model are contained in the root directory of the VNetEMC
project.

6.2. Generation of XML Scenarios

The directory src/generator contains the generators for constructing VNets, substrates
and binding them together in scenarios. We make heavily use of interfaces, such that the
generation of scenarios using e.g.,a new objective only requires changing a single line of code,
namely selecting another IObjectiveGenerator implemenation, thereby effectively
abstracting from the underlying XML data framework. This package therefore provides an API
to generate scenarios.
Importantly, by using XML wrappers, VNets and substrates can be created and stored
independently of scenarios. Thereby allowing to read them later on to create the same scenario
under different flow types, using exactly the same substrates and VNets.

1These are contained in src/test/

22

6.3. Converting XML Scenarios to MIP Models

The directory src/converter/scenario/xmlToGmpl contains the majority of code
related to generating the GMPL model and data files. Considering the generation of GMPL
model files, the creation process is considerably easy. The directory src/model/gmpl
contains a basic model, that is common to all our models, and
src/model/gmpl/extensions contains a model fragment for each possible extension,
e.g.,for splittable flows or capacitated substrate nodes. The classes responsible for generating
the model therefore load all necessary extensions and plug them into the common model file
via textual replacement of placeholds (in the common model file).
The process of writing data files, while being lengthy, simply parses the contents of the
scenario XML file into the GMPL data file format. By using the interface
IModelExtension for model extensions, these are also allowed to write GMPL data
elements independently from each other. This for example allows for the encapsulation of
writing parameters necessary to define objective functions.

6.4. Generation of XML Solution Files

Given an XML scenario file, we facilitate the generation of XML scenario solution files
according to scenario-solution.xsd. These scenario solution files represent the
solver’s solutions, which is a large mapping of variables to values, in an human readable format
and in a structured fashion. The solution file especially contains the mappings of nodes and
links for each VNet, the resulting overall substrate allocations and routing tables2.
The usage of XML solution files serves not only the easier representation of results, but also
e.g.,computes the substrate allocations that are not explicitly manifested in the solver’s solution
file. Furthermore, we decompose the flow of link groupings into flows for each contained
virtual link.
The code for generating the XML solution files is contained in
src/converter/solution.

6.5. Other Important Features

6.5.1. FilenameHandlers

To be able to understand and reproduce computational results, we advocate the usage of our
FilenameHandlers, as defined in src/util/fileHandler. Given a unique scenario name,
these FilenameHandlers define unique extensios (or names of) files generated when performing
a computational evaluation3.
Using these name schemes, it is easy to generate computational evaluations that are easily
comprehensible, as there exists ()what we call) the “chain of evidence”. Given a uniquely

2Depending on the flow model, routing tables are either specified for each virtual link, or for each substrate node or
for each combination of substrate destinations and VNets.

3See Chapter A for an overview

23

named scenario file, all corredponding (model, data, lp, solution, log, ..) files are generated
based on previously generated files without changing them. If, in retrospect, the results of a
computational evaluation need to be investigated, all intermediary steps to solve the problem
are well-documented.

6.5.2. Startup / Execution Scripting Support

Using the scripting related parameters in settings.xml, we allow for exporting script files
for starting experiments using Gurobi or CPLEX. Furthermore, the
<InputScriptForGurobi/> and <InputScriptForCPLEX/> templates can be used
to pass parameters to these solvers, see the default settings.xml file.

24

7. Extending the VNetEMC: How to
introduce a New Objective Function

In this chapter we will shortly outline how to extend the VNetEMC by introducing a new
objective. As it is sufficiently simple, we will, as an example, consider the objective of
maximizing the profit of the provider by allowing access control:

• We assume that all VNets are not required to be embedded, such that always a feasible
solution exists (possibly embedding none of the VNets).

• Each VNet V ∈ V is attributed with some profit, that is gained, when V is embedded:
profit : V− > R+.

• The objective is therefore max
∑

V ∈V embedded(V) · profit(V).

7.1. Writing a GMPL-Model Template

To start off, you should prototype the objective within GMPL. To introduce the extension into
the VNetEMC, you should use the extension template
blank_extension_template.mod1. Chapter B contains an overview over the common
set of input and outputs avaiable to all GMPL models. Note that our GMPL models as well as
the XML schemes use the more general term request instead of VNets. A GMPL model
fragment could look like this2 :

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
#BEGIN_OBJECTIVE_FUNCTION_PARAMETERS

check: card(RequestsThatMustBeEmbedded) == 0;

param profit{Requests} > 0;

#END_OBJECTIVE_FUNCTION_PARAMETERS
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
#BEGIN_DEFINITION_OBJECTIVE_FUNCTION

1Contained in src/model/gmpl/extensions/
2Chapter B contains the definition of globally available sets, parameters and variables that can be used in any model

extension.

25

maximize profit:
sum{req in Requests} request_embedded[req] * profit[request];

#END_DEFINITION_OBJECTIVE_FUNCTION
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Above, the check guarantees that all requests are free to be not embedded3. The parameter
profit, which mus be specified for all requests, gives the profit and the objective function is
straight forward. Store this model fragment as maximizeProfit.mod4.

7.2. Extending the scenario.xsd

Having prototyped the objective, you can introduce it into the XML data model. To do that,
introduce the new objective type into scenario.xsd as follows:
<xs:complexType name="MaximizeProfitType">
<xs:sequence>
<xs:element name="ProfitOfRequest" type="xs:decimal" minOccurs="1" maxOccurs="unbounded">
<xs:attribute name="RequestId" type="xs:string" use="required"/>
</xs:element>

</xs:sequence>
</xs:complexType>

Having done that, you need to extend the ObjectiveFunctionChoiceType definition
within scenario.xsd:
<xs:complexType name="ObjectiveFunctionChoiceType">

<xs:choice>
<xs:element name="MinimizeMigrationCosts" type="vnetEMCScenario:[..]">
<xs:element name="MaximizeProfit" type="vnetEMCScenario:MaximizeProfitType"/>

</xs:choice>
</xs:complexType>

Lastly, to update the automatically generated Java classes within the framework, execute the
contents of the script build/create_schemes.sh. This should generate the Java class
MaximizeProfitType.java5, such that the class
ObjectiveFunctionChoiceType can now contain our new objective.

7.3. Developing a Generator for the Objective

To enable generating scenarios with the new objective, you have to write a class implementing
the interface IObjectiveGenerator 6. The objective function is the last element to be
generated when XML scenarios are created. Thus, at the time the generator is called via the
function generateObjectiveFunction(ScenarioType scenario), all requests

3Note that in our GMPL formulation as well as in our XML data representation, we use the more general term
requests instead of VNets, as VNets (in our opinion) only describe the topology and resource requirements, but
not e.g.,that nodes must be mapped disjointly.

4under src/model/gmpl/extensions/ObjectiveTypes/
5under src/model/generated/vNetEMC/scenario/
6This file should be stored under src/generator/objective/maximizeProfit.

26

are already added to the scenario. Therefore, you only need to iterate over the requests
contained in the scenario, decide on some profit specification (e.g.,uniform or depending on the
number of nodes, or ...) and generate the XML data elements (MaximizeProfitType)
accordingly.

7.4. Enabling GMPL Export

Once the new objective is included in the generation process, the GMPL export has to be
adapted to allow for exporting the new model fragment maximizeProfit.mod as well as to
generate the corresponding parameters for the data file.
To enable this, first a class extending the IModelExtension interface must be written. As
we have specified the model adaption in maximizeProfit.mod, you should derive a class
extending ExtensionFromFileContentsWithoutData.java which will handle
exporting the model part7. In the constructor of this class, the scenario has to be passed, such
that the data of the objective is accessible. By overriding the function void writeData(
ScenarioGMPLDataAppender dataAppender), you can then write the GMPL
parameters8

The main entry point for the creation process of the GMPL models and their data files is the
class GMPLCreator.java 9. There, you now only have to extend the existing function
handleObjectiveType(), which inspects the ObjectiveFunctionChoiceType
XML element and decides which class implementing the interface IModelExtension
should be loaded. Therefore, if the new XML entry MaximizeProfitType is set, the newly
developed IModelExtension only needs to be loaded.

7This class should be stored under src/converter/scenario/xmlToGmpl/objectiveFunctions.
8 See MinimizeMigrationCostExtension.java for an example.
9contained in src/converter/scenario/xmlToGmpl

27

Part III.

Appendix

28

A. Overview on Files Generated by the
VNetEMC

-scenario.xml The XML file representing a single VNEP scenario.

.mod The GMPL model file corresponding to the -scenario.xml file.

.dat The GMPL data file corresponding to the -scenario.xml file.

.lp The mixed-integer program file corresponding to the GMPL .mod and .dat files.

start_ Input script for the MIP solver to run the .lp file.

.sol The solution file of either CPLEX or Gurobi corresponding to the .lp file.

.sol.meta A meta-solution file, detailing runtime, objective value etc. corresponding to the
.sol file if Gurobi was used.

.log The log file generated during the solution process of the .lp file.

-scenario-solution.xml The XML file representing the solution to the original
-scenario.xml file according to the solution files .sol, .sol.meta and .log.

29

B. Common Input and Output of the
GMPL Models

B.1. Input

###
DEFINITION OF SUBSTRATE GRAPH
###

set VS;
set ES within VS cross VS;

###
DEFINITION OF REQUESTS
###
set Requests;
set RequestsWithDisjointNodeMappings within Requests default {};
set RequestsThatMustBeEmbedded within Requests default Requests;

set VReq{Requests};
set EReq{req in Requests} within VReq[req] cross VReq[req];

set AllowedSubstrateNodes{req in Requests, VReq[req]} within VS default VS;

set EReqGroupIds {req in Requests};
set EReqGroup {req in Requests, EReqGroupIds[req]} within EReq[req];

param virtual_spec_node {req in Requests, VReq[req]} > 0;
param virtual_spec_link {req in Requests, EReq[req]} > 0;

B.2. Output

###
VARIABLES
###

var request_embedded {req in Requests} binary;
var node_mapping {req in Requests, VReq[req], VS} binary;
var flow_alloc{req in Requests, EReqGroupIds[req], ES_all} >= 0;

30

	Theory
	Supported Embedding Models
	Substrate and VNet Model(s)
	Semantics of (Un)directed Substrates and (Un)directed VNets
	Model Extensions
	Objective Functions
	Flow Models

	Complexity of Models
	Notation
	Complexity of the Basic Model
	Complexity of Extensions
	Complexity of Flow Models

	Modeling Opportunities
	Modeling Virtual (Oversubscribed) Clusters
	An ``Ultimatively'' General Substrate Model

	Practice
	Getting Started
	Contents of the Project
	Required Software
	Setting up VNetEMC
	Running the Test Models

	Design Philosophy
	Main Components
	XML Data Representation
	Generation of XML Scenarios
	Converting XML Scenarios to MIP Models
	Generation of XML Solution Files
	Other Important Features

	Extending the VNetEMC: How to introduce a New Objective Function
	Writing a GMPL-Model Template
	Extending the scenario.xsd
	Developing a Generator for the Objective
	Enabling GMPL Export

	Appendix
	Overview on Files Generated by the VNetEMC
	Common Input and Output of the GMPL Models
	Input
	Output

