It's About Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities IEEE IPDPS 2014

<u>Matthias Rost</u>, Stefan Schmid, Anja Feldmann Technische Universität Berlin

May 22th, 2014 Arizona State University

The Virtual Network Embedding Problem (VNEP)

Physical Network

The Virtual Network Embedding Problem (VNEP)

Virtual Network Requests

The Virtual Network Embedding Problem (VNEP)

Virtual Network Requests

- map virtual onto substrate nodes
- map virtual links onto substrate paths
- obeying the substrate's capacities

Embedding

Facets of the VNEP

Setting

(De)centralized

Multi-Provider

Reliability

Reconfigurations

Objectives

Access Control

Load Balancing

Energy Savings

Algorithms

Exact

Heuristic

Related Work

TABLE III TAXONOMY OF CONCISE VNE APPROACHES

Category	R efe rence	Optimization	Coordination	Contribution			
C/S/C	(2011) Infulne and Raid1 (2011)	Exact	One Stage	Provide's delay, location and routing constraints			
	[99] Liu et al. (2011)	Exat	One Stage	Etact VNE based on correspondence matrices			
	(1) Trink et al. (2011)	Exat	One Stage	Etact VNE problem with SLA QoS guarantees			
	61 Pages et al. (2012)	Exact/Metalteuristic	One Stage	Introduces the VNE for optical networks			
	HI Litchka and Karl (2009)	Heuristic	One Stage	Provides one stage VNE. Based on SID			
	62 Di et al. (2010)	Heuristic	One Stage	Improvement of the approach in 44			
	63 Ghazar and Saaman (2011)	Heuristic	One Stage	Introduces hierarchical management of the SN			
	64. 65 Yun et al. (2011-2012)	Heuristic	One Stage	First VNE approach in wireless multihop networks. Into duces metrics and feasibility measures for wireless VNE			
	55 Chen et al. (2012)	Heuristic	One Stage	Reduces resource fragmentation			
	(66) Yu et al. (2012)	Heuristic	One Stage	One step VNE that increases coordination			
	67 Liu et al. (2011)	Heuristic	Two Stages	Improves coordination based on nodes proximity			
	241. 23 Shong et al. (2011-2012)	Heuristic	Two Stages	Opportunistic resource sharing to deal with load fluctuation			
	68 Li et al. (2012)	Heuristic	Two Stages	Topology awareness to enforce VNE coordination			
	(9) Lu and Tumer (2006)	Heuristic	Uncoordinated	Embedding in specific backbone-star VN topologies			
	32 Yu et al.* (2008)	Heuristic	Uncoordinated	Unlizes the KSP algorithm 13 for VLiM			
	TO Razzag and Sirai (2000)	Heuristic	Uncondinated	Different K values in KSP based VLiM			
	71 Razzas et al. (2011)	Housistic	Uncondinged	have stig ato a the VNE impact of bottlenecked nodes a			
	72 Normina et al. (2011)	Heuristic	Uncoordinated	VNE considering SN resources here may are ity			
	[73] Leivadeas et al.* (2011)	Heuristic	Uncoordinated	Introduces VNE for wireless network testbols			
	(22), (57) Botero et al. (2011-2013)	Heuristic	Uncoordinated	Introduces hidden hop constraints			
	34 Zhu and Ammur? (2006)	Henristie	Unconfinited	Provides a balanced link and node stress in the SN			
	SI Failant et al. (2011)	Metabeurigie	One State	Max-Min dat Colony metalessistic VNE anneach			
	[25] Cheng et al. (2012)	Metaheuristic	One Stage	Accelerates convergence of PSO VNE metahouristic with topology aware node ranking 17			
	26 Zhang et al. (2012)	Heuristic	Uncondinged	Mars one virtual node in several substrate nodes			
	277 Di et al. (2012)	Heuristic	One Stage	Coordinated VNE reducing the number of backtracks b carefully choosing the first virtual node to map			
	28 Abedifar and Eshghi (2012)	Heuristic	Uncoordinated	Introduces VNE in the optical domain trying to minimize th number of Js per link			
	22 Aris Leinadaus et al. (2012)	Heuristic	Coordinated	Considers importance of virtual nodes for embedding			
	(30) Tae-Ho Lee et al. (2012)	Heuristic	InterioP	clustering of vistual networks in multi-provider environment			
CANC	Different of all (2011)	Mondatio	Our State	Manution of modes with horthonochod adjacent links			
	Bienkowski at al. (2000)	Mensiotic	Two States	Maritica when service access position changes			
	34 Zhu and Ammur? (2006)	Henristic	Uncontinued	Relate the cost of periodic reconfigurations			
	27 Eas and America (2006)	Heuristic	Uncontinued	Rolares the cost of VNRs acculturation			
	(1) Col et al. (2010)	Hamistia	Uncondicated	Report function broad on SN molection			
	84 Shun-li and Xue-song (2011)	Heuristic	Uncoordinated	Mentifies mapped virtual nodes and links with not optima materia and minister them to save SN resources			
	35 Sun et al. (2012)	Heuristic	Uncoordinated	Introduces the VNE moblem for evolving VNRs			
D/S/C	36. 87 Houidi et al (2010)	Heuristic	Uncoordinated	First distributed approach to solve VNE Proposes a VN			
				protocol to manage the communication among substrate node			
	[35] Xin et al. (2011)	Heuristic	InterinP	Introduces the InterInP VNE for networked clouds			
	392 Lv et al. (2011)	Heuristic	InterInP	InterInP VNE using hierarchical virtual resource organization			
	[42] Houidi et al.* (2011)	Exat/Metaheuristic	InterInP	VNR is split a signing each subVN in different InPs. Provide exact and heuristic splitting approaches			
	D Leivadeas et al.º (2012)	Heuristic	InternP	Graph partitioning InterInP VNE using a hearistic integratin a mm k-cut algorithm followed by subgraph isomorphism			
D/D/C	Maquetan et al. (2010)	Heuristic	Uncoordinated	First distributed dynamic approach. Reorganizes the SN who VNs demonds choose			

TABLE IV TAXONOMY OF REDUNDANT VNE APPROACHES

Category	R efe rence	Optimization	Coardination	Contribution				
C/S/R	42 Houidi et al.* (2011)	East	One Stage	First approach providing on E.P exact solution				
	[92] Zhang et al. (2011)	Exact	One Stage	Optimal resilient solution attaining an enhanced QeS map- ping. Provides diversified substrate back-up paths				
	[41] Botmo et al. (3012)	Exct	One Stage	Introduces the energy aware VNE				
	(23) Wang and Wolf (2011)	Exact	One Stage	Redefines the VNR as a traffic matrix				
	94, 95, 96 Shansi and Bookmeyer (2007-2009)	Heuristic	One Stage	Recover link failures by providing backup paths with inter- mediate nodes				
	97 Koslovski et al. (2010)	Heuristic	One Stage	Introduces reliability as a service offered by the InP. Reliable VNEs based on subgraph isomorphism detection				
	[98] Yu et al. (2010)	Heuristic	One Stage	Introduces failure-dependent protection with a back-up solu- tion for each regional failure				
	(99) L.v. et al. (2012)	Heuristic	One Stage	Introduces losses to multicast VNE in wireless mesh networks				
	36, 22 Chowdhury et al. (2009-2011)	Heuristic	Two Stages	Coordination in VNE using multi-path for VLiM				
	Rahman et al. (2010)	Heuristic	Two Stages	Upon a failure, the economic penalty is minimized by the pre-reservation of a bandwidth quota for back-up in SN links				
	51 Batt et al.* (2010)	Heuristic	Two Stages	VNE awareness of the SN bottlenecked resources				
	29 Yeaw et al. (2010)	Heuristic	Two Stages	Introduces sharing among back up resources. Reduces re- sources allocated for redundancy				
	100 Sun et al. (2011)	Heuristic	Two Stages	Resilient VNE optimizing the embedding cost and reducing computational complexity				
	30 Yu et al. (2011)	Heuristic	Two Stages	Resilient VNE analyzing failures in substrate nodes				
	12 Ya et al.* (2008)	Heuristic	Uncoordinated	Introduces the multi-path approach for VLiM				
	101 Cao et al. (2010)	Heuristic	Uncourdinated	Improvement of the approach in 10				
	102 Yang et al. (2010)	Heuristic	Uncoordinated	Divides the SN in regions to reduce VNE complexity				
	103 Zho et al. (2010)	Heuristic	Uncoordinated	Maps one virtual node to multiple substrate nodes				
	104 Chen et al. (2010)	Heuristic	Uncoordinated	Reactive resiliency protection approach against failures during the online VNE process. Considers just substrate link failures				
	(105) Ya et al. (2011)	Heuristic	Uncoordinated	Proactive VNE approach offering protection against SN link failures for links with high stress				
	[23] San et al. (2011)	Heuristic	Uncoordinated	Introduces stochastic BW demand to the VNE				
	55 Lu et al. (2011)	Heuristic	Uncoordinated	Introduces load halancing in links				
	28 Gao et al. (2011)	Heuristic	Uncoordinated	Proactive resilient VLIM approach sharing back-up paths				
	[17] Cheng et al. (3011)	Metaheuristic	Two Stages	Introduces topology-awareness in VNE				
	106 Sheng et al. (3011)	Metaheuristic	Two Stages	Embedding time depends on VNR lifetime. Uses simulated annealing metaheuristic				
	52 Zhang et al. (2012)	Metaheuristic	Two Stages	Introduces particle swarm optimization (PSO) metaheuristic				
	107] Sun et al. (2012)	Metaheuristic	Two Stages	Introduces VNE in multi-datacenter environments				
	105 Lv et al. (2012)	Metaheuristic	Uncoordinated	Introduces VNE in wireless mesh networks				
	(2012) Leivadeas et al.* (2012)	Heuristic	Two Stages	Uses the approach in 22 to solve the VNE for an arbitrary pool of heterogeneous resources				
	[54] Masti and Raghavan (2012)	Heuristic	Two Stages	VNE considering the residual capacity of the substrate link:				
	109 Zhang et al. (2012)	Euco/Heuristic	One Stage	Recover link failures providing disjoint SN backup paths				
C/IVR	(53) Batt et al.* (2010)	Heuristic	Two Stages	Reactive reconfiguration of virtual links and nodes causing rejection to less critical SN revious				
	32 Yu et al.* (2000)	Heuristic	Uncoordinated	Reconfigure the embedding by changing the splitting ratio in the multipath VLiM solution				
	[110] Schaffisth et al. (2010)	Eact	One Stage	ILP-based VNE. Dynamically reconfigures existing mappings				
	(111) Chen et al. (2011)	Heuristic	Two Stages	Periodic reconfiguration of SN nodes with high utilization				
D/S/R	38 Chowdhary et al. (2010)	Heuristic	InterInP	First InterfulP VNE proposal. Mediates between InP and SP interests. VNR is split across InPs and embedded locally				
D/D/R	[112] Houidi et al. (2010)	Heuristic	Two Stages	Fault-telerant VNE that acts upon node and link failures				

It's about time: Optimal Temporal Virtual Network Embeddings

Related Work

TABLE III TAXONOMY OF CONCISE VNE APPROACHE

Patasan	Reference	Outlestation	Condition	Control Bandland						1581-51.00
c angle y	R. UR PERC	Openmerson	C. OPTOINGTOON	Come interest		Category	R efe rence	Optimization	Coordination	Contribution
C.SEC	[26] Infuhr and Raidi (2011)	Exat	One Stage	Provide's delay, location and routing constraints		C/S/R	42 Houldi et al.* (2011)	Exct	One Stage	First approach providing on E.P exact solution
	[99] Lau et al. (2011)	Exas	One Stage	Eract VNE based on correspondence matrices			[92] Zhang et al. (2011)	Exact	One Stage	Optimal resilient solution attaining an enhanced QoS map-
	[<u>60</u>] Trinh et al. (2011)	Exat	One Stage	Eract VNE problem with SLA QoS guarantees					ping. Provides diversified substrate back-up paths	
	[61] Pages et al. (2012)	Exact/Metaleonistic	One Stage	Introduces the VNE for optical networks			[43] Botero et al. (2012)	Exact	One Stage	Introduces the energy aware VNE
	[11] Lischka and Karl (2009)	Heuristic	One Stage	Provides one stage VNE. Based on SID			(93) Wang and Wolf (2011)	Exact	One Stage	Redefines the VNR as a traffic matrix
	[62] Di et al. (2010)	Heuristic	One Stage	Improvement of the approach in [44]		[94], [65], [66] Shansi and Boockmeyer	Heuristic	One Stage	Recover link failures by providing backup paths with inter-	
	[63] Ghazar and Sauman (2011)	Heuristic	One Stage	Introduces hierarchical management of the SN			Thursday		meeting notes	
	[64], [63] Yan et al. (2011-2012)	Housistic	One Stage	First VNE approach in wireless multilup networks. Intro- duces metrics and feasibility measures for wireless VNE			(1) Kosawsia et al. (2010)	Heurstic	One stage	Introduces reliability as a service othered by the InP. Reliable VNEs hased on subgraph isomorphism detection
	[36] Chen et al. (2012)	Heasistic	One Stage	Reduces resource fragmentation		[18] Yu et al. (2010)	Heuristic	One Stage	Introduces failure-dependent protection with a hick-up solu- tion for such ranional failure	
	[66] Yu et al. (2012)	Houristic	One Stage	One step VNE that increases coordination		[30] 1 x at al. (2017)	Montierie	One Roam	Introduces house to multicest VNE in mindage such as trouble	
	[67] Liu et al. (2011)	Heuristic	Two Stages	Improves coordination based on nodes proximity		The first character and character but to	Manufactor	The Press	Conduction in VAN solar and in the MAN	
	[35]. [25] Sheng et al. (2011-2012)	Heuristic	Two Stages	Opportunistic resource sharing to deal with load fluctuation			(III) Reference of CORD	Manufaction	Two Stages	Contraction of the contents matched is minimized by the
	(68) Li et al. (2012)	Heuristic	Two Stages	Topology awareness to enforce VNE coordination		[] Remain is in (2010)		Law series	pre-reservation of a bandwidth quota for back-up in SN links	
	(1) Lu and Turner (2006)	Heuristic	Uncoordinated	Embedding in specific backbone-star VN topologies		[31] Batt et al.* (2010)	Heuristic	Two Shapes	VNE awareness of the SN hottlenecked resources	
	[32] Yu et al. ^a (2008)	Heuristic	Uncoordinated	Utilizes the KSP algorithm [13] for VLiM		[29] Yeow et al. (2010)	Heuristic	Two Stages	Introduces sharing among hack up resources. Reduces re-	
	[30] Razzaq and Siraj (2000)	Heuristic	Uncoordinated	Different K values in KSP based VLiM						sources allocated for industancy
	[21] Razzaq et al. (2011)	Heuristic	Uncoordinated	lave stigates the VNE impact of bottlenecked nodes N			[100] San et al. (2011)	Heuristic	Two Stages	Resilient VNE optimizing the embedding cost and reducing
	[72] Nogueira et al. (2011)	Heuristic	Uncoordinated	VNE considering SN resources here rogene ity						computational complexity
	[23] Leivadeas et al.* (2011)	Hearistic	Uncoordinated	Introduces VNE for wireless network testbeds			[30] Yu et al. (3011)	Heuristic	Two Mages	Resilient VNE analyzing failures in substrate nodes
	[22] (77) 7 (500 et al. (2011-2013)	Heuristic	Uncoordinated	Introduces hidden hop commission			[32] Yu et al. ⁹ (2008)	Heuristic	Uncourdinated	Introduces the multi-eath approach for VLIM
	[7] Zhu and Januare (2006)	Heuristic	Uncoontinuted	Devides induced link and a series in the SN	-		[10] Gao et al. (200)	Heuristic	Uncoordinated	Inprovement of the opposith in 16
	Di Fujiati et (201) Metaheurine: Of Stag	OF Sug	ntridutio)N:	[102] Yang et al. (210)		Constants of	a case of Soun plenab rouge Vall couplexity	
	[25] Renz et al. (202) Metaheuris 01.8					0 500	(int) the car (art)			I CITLY
				topology andre node randing [77]			[103] Ma et al. (2011)	TEUESSE	Oncoordinate d	the online VNII repeats. Considers instructed ink failures
	[36] Zhang et al. (2012)	Heuristic	Uncoordinated	Maps one vietual node in several substrate nodes				Heuristic	Uncourdinated	Proactive VNE approach offering protection arainst SN link
	[77] Di et al. (2012)	Heuristic	One Stage	Coordinated VNE reducing the number of backtracks by carefully chosing the first virtual node to map						failures for links with high stress
	[28] Abedifar and Eshyfti (2012)	Heuristic Uncoordinated	Introduces VNE in the optical domain trying to minimize the			[23] San et al. (2011)	Heuristic	Uncoordinate d	Introduces stochastic BW demand to the VNE	
			number of Js per link.			[33] Lu et al. (2011)	Heuristic	Uncoordinated	Introduces load halancing in links	
	(2) Aris Leisudeus et al. (2012)	Heuristic	Coordinated	Considers importance of virtual nodes for embedding			[28] Gao et al. (2011)	Heuristic	Uncoordinated	Proactise resilient VLiM approach sharing back-up paths
	[30] Tae-Ho Lee et al. (2012)	Hearistic	InterInP	clustering of virtual networks in multi-provider environment			[37] Cheng et al. (3011)	Metaheuristic	Two Stages	Introduces topology-awareness in VNE
C/D/C	[19] Failarti et al. (2011)	Heuristic	One State	Mirration of nodes with bottlenecked adjacent links			106 Sheng et al. (2011)	Metabouristic	Two Stages	Embedding time depends on VNR lifetime. Uses simulated
	[3] Bienkowski et al. (2000)	Heuristic	Two States	Migration when service access position changes			(TT) These study (TAUT)	March and all	Test Distant	annuang meanemen. Interfere metide men entiritates (BPD) metidentitie
	Tal Zhu and Ammur* (2006)	Heuristic	Unconditioned	Reduce the cost of neriodic reconfigurations			[11] Aning the (1912)	And an owned	Two stages	inclusive frames system of minimum (1903) inclusions
	[32] Fan and Ammar (2006)	Heuristic	Uncoordinated	Reduces the cost of VNRs acconfiguration			[[07] Sui et al. (2012)	Metallouistic	Two stages	Introduces VME in mini-exacting environments
	[83] Cai et al. (2010)	Heuristic	Uncoordinated	Recondituration based on SN evolution		(m) to state (dota)	11 contraction	The Design	The share was to a window more than a share of	
	[34] Shun-li and Xuz-song (2011)	Heuristic	Uncoordinated	Identifies mapped vistual nodes and links with not optimal		(3) Levareas et al. (3) Masti and Ragh	[30] Levaleix et il." (2012)	PEUPSUE	Two statios	pool of heterogeneous resources
	(181) Super et al. (1911)	Manufaction	Uncontinued	hereaftering the WNE modelses for analysis VAR-			[54] Masti and Raghavan (2012)	Heuristic	Two Stages	VNE considering the residual capacity of the substrate links
	(III) office of all (addres)	TILUIDOL	Cit Continues	and dealer and their provide an entering these			[109] Zhang et al. (2012)	Exact/Hearistic	One Stage	Recover link failures providing disjoint SN backup paths
D/SC	16, 87 Houidi et al. (2010)	Heuristic	Uncoordinated	First distributed approach to solve VNE. Proposes a VNE protocol to manage the communication among substrate nodes		C/D/R	55 Batt et al.* (2010)	Heuristic	Two Stages	Reactive reconfiguration of virtual links and nodes causing rejection to less critical SN revious
	[35] Xin et al. (2011)	Heuristic	InterfalP	Introduces the InterIsP VNE for networked clouds			[32] Ya et al.* (2030)	Heuristic	Uncourdinate d	Reconfigure the embedding by changing the splitting ratio in
	(9) Lv et al. (2011)	Heuristic	Interful?	InterInP VNE using hierarchical virtual resource organization						the multipath VLiM solution
	[42] Houidi et al.* (2011)	Exact/Metaheuristic	InterInP	VNR is split a signing each subVN in different InPs. Provides exact and hearistic soliting approaches			(110) Schaffrath et al. (2010)	Eact	One Stage	ILP-based VNE. Dynamically reconfigures existing mappings
	[20] Leivaders et al.2 (2012)	Heuristic lateduP Groch partitioning InterlaP VNE using a heuristic interacting			(11) chea e at (2011)	HE GERRINE.	two stages	renous recomprision or set notes with high strikation		
	samp error and the (ADTA)			a min k-cut algorithm followed by subgraph isomorphism		D/S/R	B Chowdhury et al. (2010)	Heuristic	InterlaP	First InterInP VNE proposal. Mediates between InP and SP interests. VNR is split across InPs and embedded locally
D/D/C	[91] Maquesan et al. (2010)	Heatstac	Uncoordinated	Pust dominated dynamic approach. Reorganizes the SN whon		D/D/P	(III) Booki et al. (2010)	Busicio	Too Stane	Early placest VNE that are more under out link follows

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings

May 22th, 2014 4

→ time

Our Model

Motivation #1: Business

Motivation

Provider Incentives: Minimizing Load

Motivation

Provider Incentives: Maximizing Utilization by Collocation

Motivation #2: Modeling Opportunities

Modeling Opportunities: Evolution of VNets

Reservation of maximal allocations over the whole time?

Motivation

Modeling Opportunities: Migrations

Motivation

Modeling Opportunities: Migrations

In previous work instantaneous operation!

Modeling Opportunities: Migrations

Motivation

Modeling Opportunities: Fine-grained Migrations

Important Decision: Continuous-Time Model!

Motivation

Important Decision: Continuous-Time Model!

Problem Statement

Notation

 $\begin{array}{l} \mbox{Substrate \mathcal{S}} \\ \mbox{topology $\mathcal{S}=(V_S,E_S)$} \\ \mbox{capacities $\mathbf{c}_S:V_S\cup E_S\to \mathbb{R}^+$} \\ \mbox{time horizon $\mathbf{T}>0$} \end{array}$

 $\begin{array}{l} \mbox{Requests } \mathcal{R} = \{ \mathsf{R}_1, \dots, \mathsf{R}_n \} \\ \mbox{topologies } (\mathsf{V}_{\mathsf{R}_i}, \mathsf{E}_{\mathsf{R}_i}) \\ \mbox{resources } \mathbf{c}_{\mathsf{R}_i} : \mathsf{V}_{\mathsf{R}_i} \cup \mathsf{E}_{\mathsf{R}_i} \to \mathbb{R}^+ \\ \mbox{temporal spec interval } [\mathbf{t}_{\mathsf{R}_i}^s, \mathbf{t}_{\mathsf{R}_i}^e] \\ \mbox{duration } \mathbf{d}_{\mathsf{R}_i} \leq \mathbf{t}_{\mathsf{R}_i}^e - \mathbf{t}_{\mathsf{R}_i}^s \end{array}$

Temporal Virtual Network Embedding Problem (TVNEP)

Decide which of the requests to embed. Access Control Resource Mapping Map virtual onto substrate resources, obtaining alloc_V : $\mathcal{R} \times V_{S} \rightarrow \mathbb{R}_{\geq 0}$ and alloc_F: $\mathcal{R} \times \mathsf{E}_{\mathsf{S}} \to \mathbb{R}_{>0}$. Find start $t_{\mathsf{P}}^+ \geq \mathbf{t}_{\mathsf{P}}^s$ and end time $t_{\mathsf{P}}^- \leq \mathbf{t}_{\mathsf{P}}^e$ for $\mathsf{R} \in \mathcal{R}$, Scheduling such that $t_{\mathsf{P}}^- + t_{\mathsf{P}}^+ = \mathbf{d}_{\mathsf{R}}$ holds. For each point in time $t \in [0, \mathbf{T}]$ ensure: Feasibility $\forall N_s \in \mathbf{V}_{\mathbf{S}}. \mathbf{c}_{\mathbf{S}}(N_s) \geq \sum alloc_V(\mathbf{R}, N_s),$ $R \in \mathcal{R}$ with $t \in (t_{\mathsf{P}}^+, t_{\mathsf{P}}^-)$ $\forall L_s \in \mathbf{E}_{\mathbf{S}}. \ \mathbf{c}_{\mathbf{S}}(L_s) \geq \sum \quad alloc_{\mathbf{E}}(\mathbf{R}, L_s) \ .$ $R \in \mathcal{R}$ with $t \in (t_{\mathsf{P}}^+, t_{\mathsf{P}}^-)$

Local Embedding

Mapping process will be explained in a bit.

$\begin{array}{ll} \mbox{Classic VNEP Task} \\ \mbox{Access Control} & \mbox{Decide which of the requests to embed: } x_{\mathcal{R}}: \mathcal{R} \to \mathbb{B}. \\ \mbox{Resource Mapping} & \mbox{Map virtual onto substrate resources, obtaining} \\ & alloc_{V}: \mathcal{R} \times \mathbf{V_{S}} \to \mathbb{R}_{\geq 0} \mbox{ and} \\ & alloc_{E}: \mathcal{R} \times \mathbf{E_{S}} \to \mathbb{R}_{\geq 0}. \end{array}$

Overview

Overview

Contributions

- **O** Continuous-time Mixed-Integer Programming formulations for TVNEP
- cΣ-Model utilizes state-space and symmetry reductions to render solving TVNEP (computationally) feasible
- ${f 0}$ Greedy polynomial time heuristic which is based on c Σ -Model
- Initial computational evaluation

Why Mixed-Integer Programming?

- TVNEP is a novel problem: baseline for further work
- Offline scenario: trade-off runtime with solution quality

Mixed-Integer Programming Models

Standard VNEP Access Control Decide which of the requests to embed: $x_{\mathcal{R}} : \mathcal{R} \to \mathbb{B}$. Resource Mapping Map virtual onto substrate resources, obtaining alloc_V : $\mathcal{R} \times \mathbf{V}_{\mathbf{S}} \to \mathbb{R}_{\geq 0}$ and alloc_{*F*} : $\mathcal{R} \times \mathsf{E}_{\mathsf{S}} \to \mathbb{R}_{>0}$.

Novel: Continuous-Time Scheduling

Find start $t_{\mathsf{R}_{:}}^{+} \geq \mathbf{t}_{\mathsf{R}_{:}}^{s}$ and end time $t_{\mathsf{R}_{:}}^{-} \leq \mathbf{t}_{\mathsf{R}_{:}}^{e}$, such that Scheduling $t_{\mathsf{R}}^- + t_{\mathsf{R}}^+ = \mathbf{d}_{\mathsf{R}}$ holds. For each point in time $t \in [0, \mathbf{T}]$: Feasibility $\forall N_s \in \mathbf{V}_{\mathbf{S}}. \ \mathbf{c}_{\mathbf{S}}(N_s) \geq \sum \quad alloc_V(\mathbf{R}, N_s) \ ,$ $R \in \mathcal{R}$ with $t \in (t_{\mathsf{P}}^+, t_{\mathsf{P}}^-)$ $\forall L_s \in \mathbf{E}_{\mathbf{S}}. \ \mathbf{c}_{\mathbf{S}}(L_s) \geq \sum \quad alloc_{\mathbf{E}}(\mathbf{R}, L_s) \ .$ $R \in \mathcal{R}$ with $t \in (t_{\mathsf{R}}^+, t_{\mathsf{R}}^-)$

Introduction

Standard VNEP Access Control & Resource Mapping

Variables

Access Control $\mathbf{x}_{\mathcal{R}}:\mathcal{R}\to\mathbb{B}$ Node Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_V : \mathsf{V}_\mathsf{R} \times \mathsf{V}_\mathsf{S} \to \mathbb{B}$ Link Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_F : \mathsf{E}_{\mathsf{R}} \times \mathsf{E}_{\mathsf{S}} \to [0, 1]$

Node mapping

Map each virtual onto a substrate node, if the request is embedded.

Link mapping

Map each virtual link onto multiple paths in the substrate (splittable flows).

Standard VNEP Access Control & Resource Mapping

Variables

Access Control $\mathrm{x}_{\mathcal{R}}:\mathcal{R}
ightarrow\mathbb{B}$ Node Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_V : \mathsf{V}_\mathsf{R} \times \mathsf{V}_\mathsf{S} \to \mathbb{B}$ Link Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_E : \mathsf{E}_\mathsf{R} \times \mathsf{E}_\mathsf{S} \to [0, 1]$

Node mapping: $\forall \mathsf{R} \in \mathcal{R}$. $\forall N_{v} \in \mathsf{V}_{\mathsf{R}}$.

$$\mathbf{x}_{\mathcal{R}}(\mathsf{R}) = \sum_{N_s \in \mathbf{V}_S} \mathbf{x}_V(N_v, N_s)$$

Link mapping: $\forall \mathsf{R} \in \mathcal{R}. \forall L_{\mathsf{V}} = (N_{\mathsf{V}}^+, N_{\mathsf{V}}^-) \in \mathsf{E}_{\mathsf{R}}. \forall N_{\mathsf{s}} \in \mathsf{V}_{\mathsf{S}}$

$$\sum_{L_s \in \delta^+(N_s)} \mathrm{x}_E(L_v, L_s) - \sum_{L_s \in \delta^-(N_s)} \mathrm{x}_E(L_v, L_s) = \mathrm{x}_V(N_v^-, N_s) - \mathrm{x}_V(N_v^+, N_s)$$

Standard VNEP Access Control & Resource Mapping

Variables

Access Control $x_{\mathcal{R}} : \mathcal{R} \to \mathbb{B}$ Node Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_V : \mathsf{V}_\mathsf{R} \times \mathsf{V}_\mathsf{S} \to \mathbb{B}$ Link Mapping $\forall \mathsf{R} \in \mathcal{R}$. $x_E : \mathsf{E}_\mathsf{R} \times \mathsf{E}_\mathsf{S} \to [0, 1]$

Node mapping: $\forall \mathsf{R} \in \mathcal{R}$. $\forall \mathsf{N}_{\mathsf{v}} \in \mathsf{V}_{\mathsf{R}}$.

$$\mathbf{x}_{\mathcal{R}}(\mathsf{R}) = \sum_{N_s \in \mathbf{V}_S} \mathbf{x}_V(N_v, N_s)$$

Link mapping: $\forall \mathsf{R} \in \mathcal{R}. \forall L_{\mathsf{V}} = (N_{\mathsf{V}}^+, N_{\mathsf{V}}^-) \in \mathsf{E}_{\mathsf{R}}. \forall N_{\mathsf{s}} \in \mathsf{V}_{\mathsf{S}}$

 $\sum_{L_s \in \delta^+(N_s)} \mathrm{x}_E(L_v, L_s) - \sum_{L_s \in \delta^-(N_s)} \mathrm{x}_E(L_v, L_s) = \mathrm{x}_V(N_v^-, N_s) - \mathrm{x}_V(N_v^+, N_s)$

Macro alloc_V(R, N_s): $\forall R \in \mathcal{R}. \forall N_s \in V_s$ Macro alloc_V(R, N_s): $\forall R \in \mathcal{R}. \forall L_s \in \mathbf{E}_S$ $alloc_V(R, N_s) = \sum_{N_v \in \mathbf{V}_R} \mathbf{c}_R(N_v) \cdot \mathbf{x}_V(N_v, N_s)$ $alloc_E(R, L_s) = \sum_{L_v \in \mathbf{F}_P} \mathbf{c}_R(L_v) \cdot \mathbf{x}_E(L_v, L_s)$

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 24 Modeling Continuous-Time: Checking Feasibility

Assume for now: Local embeddings and start / end times are fixed.

Modeling Continuous-Time: Checking Feasibility

Introduction

Modeling Continuous-Time: Checking Feasibility

Modeling Continuous-Time: Checking Feasibility

Check the feasibility of the $2 \cdot |\mathcal{R}| - 1$ states.

Abstract Event Model
Modeling Continuous-Time: Abstract Event Model

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 28

Reconstructing States: Δ -Model

Reconstructing States: Δ -Model

∆-Model

Reconstructing States: Δ -Model

- **O** Compute state *changes*: $\Delta_{\mathbf{e}_i} : \mathbf{V}_{\mathbf{S}} \cup \mathbf{E}_{\mathbf{S}} \to \mathbb{R}$ via $\chi^+_{\mathbf{R}}(e_i), \chi^-_{\mathbf{R}}(e_i)$
- 2 Enforce $\sum_{i=1}^{i} \Delta_{\mathbf{e}_i} \leq \mathbf{c}_{\mathbf{S}}$ for each state

Conditional Assignment

 $\forall \mathbf{e}_i \in \mathcal{E}. \ \forall N_s \in \mathbf{V}_{\mathbf{S}}.$

$$\Delta_{\mathbf{e}_{i}}(N_{s}) = \begin{cases} +alloc_{V}(\mathsf{R}_{1}, N_{s}) & \text{, if } \chi_{\mathsf{R}_{1}}^{+}(\mathbf{e}_{i}) = 1 \\ -alloc_{V}(\mathsf{R}_{1}, N_{s}) & \text{, if } \chi_{\mathsf{R}_{1}}^{-}(\mathbf{e}_{i}) = 1 \\ \vdots \\ +alloc_{V}(\mathsf{R}_{k}, N_{s}) & \text{, if } \chi_{\mathsf{R}_{k}}^{+}(\mathbf{e}_{i}) = 1 \\ -alloc_{V}(\mathsf{R}_{k}, N_{s}) & \text{, if } \chi_{\mathsf{R}_{k}}^{-}(\mathbf{e}_{i}) = 1 \end{cases}$$

Conditional Assignment via Big-M Constraints $\forall \mathsf{R} \in \mathcal{R}. \ \forall \mathsf{e}_i \in \mathcal{E}. \ \forall \mathsf{N}_{\mathsf{s}} \in \mathsf{V}_{\mathsf{s}}.$

$$\begin{aligned} \Delta_{\mathbf{e}_{i}}(N_{s}) &\leq + \operatorname{alloc}_{V}(\mathsf{R}, N_{s}) + \mathbf{c}_{\mathbf{S}}(N_{s})(1 - \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i})) \\ \Delta_{\mathbf{e}_{i}}(N_{s}) &\geq + \operatorname{alloc}_{V}(\mathsf{R}, N_{s}) - \mathbf{c}_{\mathbf{S}}(N_{s})(1 - \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i})) \cdot 2 \\ \Delta_{\mathbf{e}_{i}}(N_{s}) &\leq - \operatorname{alloc}_{V}(\mathsf{R}, N_{s}) + \mathbf{c}_{\mathbf{S}}(N_{s})(1 - \chi_{\mathsf{R}}^{-}(\mathbf{e}_{i})) \cdot 2 \\ \Delta_{\mathbf{e}_{i}}(N_{s}) &\geq - \operatorname{alloc}_{V}(\mathsf{R}, N_{s}) - \mathbf{c}_{\mathbf{S}}(N_{s})(1 - \chi_{\mathsf{R}}^{-}(\mathbf{e}_{i})) \end{aligned}$$

 $\forall \mathsf{R} \in \mathcal{R}. \ \forall \mathsf{e}_i \in \mathcal{E}. \ \forall N_{\mathsf{s}} \in \mathsf{V}_{\mathsf{S}}.$

$$\begin{aligned} \Delta_{\mathbf{e}_i}(N_s) &\leq + \operatorname{alloc}_V(R, N_s) + \mathbf{c}_{\mathbf{S}}(N_s)(1 - \chi_{\mathrm{R}_1}^+(\mathbf{e}_i)) \\ \Delta_{\mathbf{e}_i}(N_s) &\geq + \operatorname{alloc}_V(R, N_s) - \mathbf{c}_{\mathbf{S}}(N_s)(1 - \chi_{\mathrm{R}_1}^+(\mathbf{e}_i)) \cdot 2 \end{aligned}$$

$$\begin{array}{l} \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i}) = 0 \\ \Delta_{\mathbf{e}_{i}}(N_{s}) \leq + \, alloc_{V}(\mathsf{R}, N_{s}) + \mathbf{c}_{\mathbf{S}}(N_{s}) \\ \Delta_{\mathbf{e}_{i}}(N_{s}) \geq + \, alloc_{V}(\mathsf{R}, N_{s}) - 2 \cdot \mathbf{c}_{\mathbf{S}}(N_{s}) \end{array} \Rightarrow \begin{array}{l} \text{unbounded} \\ \Delta_{\mathbf{e}_{i}}(N_{s}) \leq \mathbf{c}_{\mathbf{S}}(N_{s}) \\ \Delta_{\mathbf{e}_{i}}(N_{s}) \geq - \, \mathbf{c}_{\mathbf{S}}(N_{s}) \end{array}$$

 $\forall \mathsf{R} \in \mathcal{R}. \ \forall \mathsf{e}_i \in \mathcal{E}. \ \forall \mathsf{N}_{\mathsf{s}} \in \mathsf{V}_{\mathsf{S}}.$

$$egin{aligned} \Delta_{\mathbf{e}_i}(N_s) &\leq + \operatorname{alloc}_V(R,N_s) + \mathbf{c}_{\mathbf{S}}(N_s)(1-\chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \ \Delta_{\mathbf{e}_i}(N_s) &\geq + \operatorname{alloc}_V(R,N_s) - \mathbf{c}_{\mathbf{S}}(N_s)(1-\chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \cdot 2 \end{aligned}$$

Short Excursion: B&B

Branch-and-Bound

- branch-and-bound algorithms are in most cases used to solve MIPs
- branching generates subproblems (in a tree) •
- subproblems can be cut off by *bounding* via computing LP relaxations
 - subproblem might be infeasible
 - subproblem might have worse objective value than best known solution

Δ -Model Issue: LP Smearings!

LP Relaxation Example

 $\chi^+_{\rm R_i}({f e}_j) = 0.5$ for $j \in \{1, 2\}$:

 $-\mathbf{c}_{\mathbf{S}}(N_s) + alloc_V(\mathsf{R}_{j}, N_s) \leq \Delta_{\mathbf{e}_i}(N_s) \leq alloc_V(\mathsf{R}_{j}, N_s) + 0.5 \cdot \mathbf{c}_{\mathbf{S}}(N_s)$

∆-Model

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi^+_{\rm R_i}({f e}_j)=$$
 0.5 for $j\in\{1,2\}$:

$$-\mathbf{c}_{\mathbf{S}}(N_s) + \textit{alloc}_V(\mathsf{R}_{j}, N_s) \leq \Delta_{\mathbf{e}_{j}}(N_s) \leq \textit{alloc}_V(\mathsf{R}_{j}, N_s) + 0.5 \cdot \mathbf{c}_{\mathbf{S}}(N_s)$$

Implications

∆-Model

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi^+_{\rm R_i}({f e}_j)=$$
 0.5 for $j\in\{1,2\}$:

 $-c_{\textbf{S}}(\textit{N}_{s}) + \textit{alloc}_{V}(\textit{R}_{j},\textit{N}_{s}) \leq \Delta_{\textbf{e}_{j}}(\textit{N}_{s}) \leq \textit{alloc}_{V}(\textit{R}_{j},\textit{N}_{s}) + 0.5 \cdot c_{\textbf{S}}(\textit{N}_{s})$

Implications

This is really bad!

 states do not 'materialize' well in LP relaxations: allocations will *never* be accounted for in the substrate's state

Ø bounding is unable to reduce search space

Σ -Model: Intuition

Requirement

Resource allocations must materialize in the substrate's state.

Σ -Model: Intuition

 $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \mathcal{E}.$

$$\Sigma(R,\mathbf{e}_i) = \sum_{j=1,\dots,i} \chi^+_{\mathsf{R}}(\mathbf{e}_j,\mathsf{R}) - \sum_{j=1,\dots,i} \chi^-_{\mathsf{R}}(\mathbf{e}_j,\mathsf{R})$$

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014

Σ -Model: State Computation

Request allocations are computed for each state

• States
$$\mathcal{S} = \{s_1, \dots, s_{2 \cdot |\mathcal{R}| - 1}\}$$

• $\forall \mathsf{R} \in \mathcal{R}. \forall \mathsf{s}_i \in \mathcal{S}. \forall \mathsf{N}_{\mathsf{s}} \in \mathsf{V}_{\mathsf{S}}.$

 $alloc_V(\mathsf{R}, \mathbf{s}_i, N_s) \geq alloc_V(\mathsf{R}, N_s) - \mathbf{c}_{\mathbf{S}}(N_s) \cdot (1 - \Sigma(R, \mathbf{e}_i))$

• $\forall s_i \in S. \forall N_s \in V_s.$

$$c_{\mathsf{S}}(\textit{N}_{s}) \geq \sum_{\mathsf{R} \in \mathcal{R}} \textit{alloc}_{V}(\mathsf{R}, \mathsf{s}_{i}, \textit{N}_{s})$$

 $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \mathcal{E}.$

$$\Sigma(R, \mathbf{e}_i) = \sum_{j=1, \dots, i} \chi^+_{\mathsf{R}}(\mathbf{e}_j, \mathsf{R}) - \sum_{j=1, \dots, i} \chi^-_{\mathsf{R}}(\mathbf{e}_j, \mathsf{R})$$

$\Sigma\text{-}\mathsf{Model}:$ State Computation

Request allocations are computed for each state

• States
$$\mathcal{S} = \{ \mathsf{s}_1, \dots, \mathsf{s}_{2 \cdot |\mathcal{R}| - 1} \}$$

• $\forall \mathsf{R} \in \mathcal{R}. \forall \mathsf{s}_i \in \mathcal{S}. \forall \mathsf{N}_s \in \mathsf{V}_{\mathsf{S}}.$

 $\textit{alloc}_V(\mathsf{R}, \mathbf{s}_i, N_s) \geq \textit{alloc}_V(\mathsf{R}, N_s) - \mathbf{c}_{\mathbf{S}}(N_s) \cdot (1 - \Sigma(R, \mathbf{e}_i))$

•
$$\forall \mathbf{s}_i \in \mathcal{S}. \forall N_s \in \mathbf{V}_{\mathbf{S}}.$$

$$c_{\mathsf{S}}(\textit{N}_{s}) \geq \sum_{\mathsf{R} \in \mathcal{R}} \textit{alloc}_{V}(\mathsf{R}, s_{i}, \textit{N}_{s})$$

LP-Smearings

State allocations fully 'materialize' if $\Sigma(R, \mathbf{e}_i) = 1$.

$c\Sigma$ -Model Overview

Computational Trade-Off

- The Σ -Model is provably stronger than the Δ -Model.
- However, the Σ -Model uses (approximately) $2 \cdot |\mathcal{R}|$ more variables!

Σ -Model can be strengthened: c Σ -Model

Compactification Consider only partial event order. Yields state-space and symmetry reductions.

User cuts Use temporal information to reduce state-space and strengthen formulation.

$c\boldsymbol{\Sigma}$ Optimization: State Compactification

$c\Sigma$ -Model: State Compactification

We only need to check feasibility after a request's start!

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 41

$c\Sigma$ -Model: State Compactification

• consider only $|\mathcal{R}| + 1$ event points

- injective mapping of request starts onto first $|\mathcal{R}|$ event points
- mapping of request R's end onto event **e**_i:
 - R ends after \mathbf{e}_{i-1} and before \mathbf{e}_i

$c\Sigma$ -Model: State Compactification

State-space reduction

Number of states is halved \Rightarrow number of variables is halved.

$c\Sigma$ -Model: State Compactification is Symmetry Reduction

$c\Sigma$ -Model: State Compactification is Symmetry Reduction

cΣ-Model: State Compactification is Symmetry Reduction

Same order as before!

cΣ-Model: State Compactification is Symmetry Reduction

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 42

Intermezzo: Incorporating Time

$c\Sigma$ -Model: Incorporating Time

$$\begin{array}{c} \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ \mathbf{t}_{\mathbf{e}_i} \leq \mathbf{t}_{\mathbf{e}_{i+1}} \end{array} \qquad \forall \mathsf{R} \in \mathcal{R}. \\ \mathbf{d}_{\mathsf{R}} = \mathbf{t}_{\mathsf{R}}^- - \mathbf{t}_{\mathsf{R}}^+ \end{array}$$

$$\begin{aligned} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ t_{\mathsf{R}}^+ &\leq \mathsf{t}_{\mathbf{e}_i} + (1 - \chi_{\mathsf{R}}^+(\mathbf{e}_i, \mathsf{R})) \cdot \mathsf{T} \\ t_{\mathsf{R}}^+ &\geq \mathsf{t}_{\mathbf{e}_i} - (1 - \chi_{\mathsf{R}}^+(\mathbf{e}_i, \mathsf{R})) \cdot \mathsf{T} \end{aligned}$$

$$\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_2, \dots, \mathbf{e}_{|\mathcal{R}|+1}\}.$$

$$t_{\mathsf{R}}^- \leq t_{\mathbf{e}_i} + (1 - \chi_{\mathsf{R}}^-(\mathbf{e}_i, \mathsf{R})) \cdot \mathsf{T}$$

$$t_{\mathsf{R}}^- \geq t_{\mathbf{e}_{i-1}} - (1 - \chi_{\mathsf{R}}^-(\mathbf{e}_i, \mathsf{R})) \cdot \mathsf{T}$$

$c\Sigma$ -Model: Incorporating Time

$$\begin{array}{c} \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ \mathbf{t}_{\mathbf{e}_i} \leq \mathbf{t}_{\mathbf{e}_{i+1}} \end{array} \qquad \qquad \forall \mathsf{R} \in \mathcal{R}. \\ \mathbf{d}_{\mathsf{R}} = t_{\mathsf{R}}^- - t_{\mathsf{R}}^+ \end{array}$$

$$\begin{aligned} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ t_{\mathsf{R}}^+ &\leq \mathsf{t}_{\mathbf{e}_i} + (1 - \sum_{j=1,\dots,i} \chi_{\mathsf{R}}^+(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \\ t_{\mathsf{R}}^+ &\geq \mathsf{t}_{\mathbf{e}_i} - (1 - \sum_{j=i,\dots,|\mathcal{E}|} \chi_{\mathsf{R}}^+(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \end{aligned}$$

$$\begin{aligned} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_2, \dots, \mathbf{e}_{|\mathcal{R}|+1}\}. \\ t_{\mathsf{R}}^- &\leq \mathsf{t}_{\mathbf{e}_i} + (1 - \sum_{j=2,\dots,i} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})) \cdot \mathsf{T} \\ t_{\mathsf{R}}^- &\geq \mathsf{t}_{\mathbf{e}_{i-1}} - (1 - \sum_{j=i,\dots,|\mathcal{E}|} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})) \cdot \mathsf{T} \end{aligned}$$

$c\Sigma$ -Model: Incorporating Time

$$\begin{array}{c} \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ \mathbf{t}_{\mathbf{e}_i} \leq \mathbf{t}_{\mathbf{e}_{i+1}} \end{array} \qquad \qquad \forall \mathsf{R} \in \mathcal{R}. \\ \mathbf{d}_{\mathsf{R}} = t_{\mathsf{R}}^- - t_{\mathsf{R}}^+ \end{array}$$

$$\begin{array}{l} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_{i} \in \{\mathbf{e}_{1}, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ t_{\mathsf{R}}^{+} \leq \mathsf{t}_{\mathbf{e}_{i}} + (1 - \sum\limits_{j=1,\dots,i} \chi_{\mathsf{R}}^{+}(\mathbf{e}_{j},\mathsf{R})) \cdot \mathsf{T} \\ t_{\mathsf{R}}^{+} \geq \mathsf{t}_{\mathbf{e}_{i}} - (1 - \sum\limits_{j=i,\dots,|\mathcal{E}|} \chi_{\mathsf{R}}^{+}(\mathbf{e}_{j},\mathsf{R})) \cdot \mathsf{T} \\ \\ & \mathsf{I} \\ \mathsf{G} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{G} \\ \mathsf{I} \\$$

Optimizations: Temporal Dependency Graph User Cuts

Temporal Dependency Graph

Temporal Dependency Graph

Latest possible point in time for R_1 to start is less than the earliest point in time at which R_2 can start. \Rightarrow We know that R_1 must start before R_2 .
Temporal Dependency Graph

Temporal Dependency Graph (Formal)

Definition

•

$$\begin{split} G_{dep}(\mathcal{R}) &= (V_{dep}, E_{dep}) \\ V_{dep} &= \mathcal{R} \times \{ start, end \} \\ E_{dep} &= \{ (v, w) \in V_{dep}^2 | latest(v) < earliest(w) \} \\ earliest((\mathcal{R}, t) \in V_{dep}) &= \begin{cases} t_R^s &, \text{ if } t = start \\ t_R^s + \mathbf{d}_R &, \text{ if } t = end \\ latest((\mathcal{R}, t) \in V_{dep}) &= \begin{cases} t_R^e - \mathbf{d}_R &, \text{ if } t = start \\ t_R^e &, \text{ if } t = end \end{cases} \end{split}$$

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 47

48

Weighted Temporal Dependency Graph

Figure: Temporal Dependency Graph with weights

First Set of User Cuts (Valid Inequalities)

 $\forall v \in V_{dep}.$

$$\frac{\mathcal{R}|+1-|\textit{dist}_{\max}^{-}(\textit{v})|}{\sum_{i=|\textit{dist}_{\max}^{+}(\textit{v})|+1}\chi_{\textit{Event}}(\textbf{e}_i,\textit{v})=1$$

Macro χ_{Event}

$$\chi_{Event}(\mathbf{e}_i \in \mathcal{E}, (\mathsf{R}, t) \in V_{dep}) = \begin{cases} \chi^+_{\mathsf{R}}(\mathbf{e}_i) & \text{if } t = start\\ \chi^-_{\mathsf{R}}(\mathbf{e}_i) & \text{if } t = end \end{cases}$$

State-space reduction!

Effectively eliminates all mapping variables outside the interval {|dist⁺_{max}(v)| + 1, ..., |R| + 1 - |dist⁻_{max}(v)|}

First Set of User Cuts (Valid Inequalities)

 $\forall v \in V_{dep}.$

$$rac{\mathcal{R}|+1-|dist_{\max}^-(v)|}{\sum\limits_{i=|dist_{\max}^+(v)|+1}\chi_{Event}(\mathbf{e}_i,v)=1}$$

Macro χ_{Event}

$$\chi_{Event}(\mathbf{e}_i \in \mathcal{E}, (\mathsf{R}, t) \in V_{dep}) = \begin{cases} \chi^+_{\mathsf{R}}(\mathbf{e}_i) & \text{if } t = start\\ \chi^-_{\mathsf{R}}(\mathbf{e}_i) & \text{if } t = end \end{cases}$$

State-space reduction!

• Effectively eliminates all mapping variables outside the interval $\{|dist^+_{max}(v)| + 1, ..., |\mathcal{R}| + 1 - |dist^-_{max}(v)|\} \dots$

2 and also state variables!

Elimination of State Variables

Second Set of User Cuts (Valid Inequalities)

$$dist_{\max}^{-}(R_1^+, R_2^+) = 2$$

(

Second Set of User Cuts (Valid Inequalities)

$$dist_{\max}^{-}(R_1^+, R_2^+) = 2$$

Second Set of User Cuts (Valid Inequalities)

 $dist_{max}^{-}(R_{1}^{+}, R_{2}^{+}) = 2$

Mapping $\chi^+_{R_2}(e_4) > 0$ should be forbidden!

Second Set of User Cuts (Valid Inequalities)

 $\forall v \in V_{dep}. \forall w \in dist_{\max}^{-}(v). \forall \mathbf{e}_i \in \mathcal{E}, dist_{\max}(v, w) + 1 \leq i \leq |\mathcal{R}|.$

$$\sum_{j=1}^{\prime} \chi_{Event}(\mathbf{e}_j, w) \leq \sum_{\substack{\mathbf{e}_j \in \mathcal{E} \\ \text{with } j \leq i-dist_{\max}^-(v,w)}} \chi_{Event}(\mathbf{e}_j, v)$$

Matthias Rost (TU Berlin) It's about time: Optimal Temporal Virtual Network Embeddings May 22th, 2014 52

Temporal Dependency Graph User Cuts

 $\forall v \in V_{dep}.$

$$\sum_{i=|\textit{dist}_{\max}^+(\textit{v})|+1}^{|\mathcal{R}|+1-|\textit{dist}_{\max}^-(\textit{v})|} \chi_{\textit{Event}}(\mathbf{e}_i,\textit{v}) = 1$$

$$\forall v \in V_{dep}. \forall w \in dist_{\max}^{-}(v). \forall \mathbf{e}_i \in \mathcal{E}, dist_{\max}(v, w) + 1 \le i \le |\mathcal{R}|.$$

$$\sum_{\substack{j=1 \ v \in \mathcal{E} \\ \text{with } j \le i - dist_{\max}^{-}(v, w)} \chi_{Event}(\mathbf{e}_j, v)$$

Strengthen formulation!

Overview $c\Sigma$ -Model

Access Control & Resource Mapping

Variables

 $\begin{array}{ll} \mbox{Access Control} & \mbox{$\mathbf{x}_{\mathcal{R}}:\mathcal{R}\to\mathbb{B}$}\\ \mbox{Node Mapping }\forall \mathsf{R}\in\mathcal{R}. & \mbox{$\mathbf{x}_{V}:\mathbf{V}_{\mathsf{R}}\times\mathbf{V}_{\mathsf{S}}\to\mathbb{B}$}\\ \mbox{Link Mapping }\forall \mathsf{R}\in\mathcal{R}. & \mbox{$\mathbf{x}_{E}:\mathbf{E}_{\mathsf{R}}\times\mathbf{E}_{\mathsf{S}}\to[0,1]$} \end{array}$

Node mapping: $\forall \mathsf{R} \in \mathcal{R}$. $\forall N_v \in \mathbf{V}_{\mathsf{R}}$.

$$\mathbf{x}_{\mathcal{R}}(\mathsf{R}) = \sum_{N_s \in \mathbf{V}_s} \mathbf{x}_V(N_v, N_s)$$

Link mapping: $\forall \mathsf{R} \in \mathcal{R}. \forall L_v = (N_v^+, N_v^-) \in \mathsf{E}_{\mathsf{R}}. \forall N_s \in \mathsf{V}_{\mathsf{S}}$

$$\sum_{L_s \in \delta^+(N_s)} \mathrm{x}_E(L_v, L_s) - \sum_{L_s \in \delta^-(N_s)} \mathrm{x}_E(L_v, L_s) = \mathrm{x}_V(N_v^-, N_s) - \mathrm{x}_V(N_v^+, N_s)$$

 $\begin{array}{l} \text{Macro alloc}_{V}(R,N_{s}) \colon \forall R \in \mathcal{R}. \forall N_{s} \in \mathbf{V}_{S} \\ \text{alloc}_{V}(R,N_{s}) = \sum_{N_{v} \in \mathbf{V}_{R}} \mathbf{c}_{R}(N_{v}) \cdot \mathbf{x}_{V}(N_{v},N_{s}) \end{array}$

Macro alloc_V(R, N_s): $\forall R \in \mathcal{R}. \forall L_s \in \mathbf{E}_{\mathbf{S}}$ alloc_E(R, L_s) = $\sum_{L_v \in \mathbf{E}_{\mathbf{R}}} \mathbf{c}_{\mathbf{R}}(L_v) \cdot \mathbf{x}_{E}(L_v, L_s)$

Access Control & Resource Mapping

Mapping start injectively: $\forall \mathbf{e}_i \in {\{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}}.$

$$\sum_{\mathsf{R}\in\mathcal{R}} \left(\chi_{\mathsf{R}}^+(\mathbf{e}_i) \right) = 1$$

Mapping onto Event Points

Guaranteeing State Feasibility

Variables $alloc_V : \mathcal{R} \times \mathcal{S} \times \mathbf{V}_{\mathbf{S}} \to \mathbb{R}_{>\mathcal{V}}$ $alloc_E : \mathcal{R} \times \mathcal{S} \times \mathbf{E}_{\mathbf{S}} \to \mathbb{R}_{>\mathcal{V}}$

Computing allocations at states: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathsf{s}_i \in \mathcal{S}. \forall N_s \in \mathsf{V}_{\mathsf{S}} / \forall L_s \in \mathsf{E}_{\mathsf{S}}.$

- $alloc_V(\mathsf{R}, \mathbf{s}_i, N_s) \ge alloc_V(\mathsf{R}, N_s) \mathbf{c}_{\mathbf{S}}(N_s) \cdot (1 \Sigma(R, \mathbf{e}_i))$
- $alloc_E(\mathsf{R}, \mathbf{s}_i, L_s) \ge alloc_E(\mathsf{R}, L_s) \mathbf{c}_{\mathbf{S}}(L_s) \cdot (1 \Sigma(R, \mathbf{e}_i))$

Ensuring feasibility: $\forall s_i \in S. \forall N_s \in V_S / L_s \in E_S.$

•
$$c_{S}(N_{s}) \geq \sum_{\mathsf{R} \in \mathcal{R}} alloc_{V}(\mathsf{R}, \mathsf{s}_{i}, N_{s})$$

•
$$\mathbf{c}_{\mathbf{S}}(L_s) \geq \sum_{\mathsf{R} \in \mathcal{R}} alloc_E(\mathsf{R}, \mathbf{s}_i, L_s)$$

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility $\forall \mathsf{R} \in \mathcal{R}.$ Variables $\forall \mathsf{R} \in \mathcal{R}. t_{\mathsf{R}}^+, t_{\mathsf{R}}^- \in \mathbb{R}_{\geq 0} \quad \forall \mathbf{e}_i \in \mathcal{E}. t_{\mathbf{e}_i} \in \mathbb{R}_{\geq 0}$ $\mathbf{d}_{\mathsf{R}} = t_{\mathsf{R}}^{-} - t_{\mathsf{R}}^{+}$ Setting start times: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathsf{e}_i \in \{\mathsf{e}_1, \ldots, \mathsf{e}_{|\mathcal{R}|}\}.$ $t_{\mathsf{R}}^+ \leq \mathsf{t}_{\mathbf{e}_{\mathsf{i}}} + (1 - \sum_{i=1,\dots,i} \chi_{\mathsf{R}}^+(\mathbf{e}_{j},\mathsf{R})) \cdot \mathsf{T} \qquad t_{\mathsf{R}}^+ \geq \mathsf{t}_{\mathbf{e}_{\mathsf{i}}} - (1 - \sum_{i=i,\dots,|\mathcal{S}|} \chi_{\mathsf{R}}^+(\mathbf{e}_{j},\mathsf{R})) \cdot \mathsf{T}$ Setting end times: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in {\mathbf{e}_2, \ldots, \mathbf{e}_{|\mathcal{R}|+1}}$.

 $t_{\mathsf{R}}^- \leq \mathrm{t}_{\mathbf{e}_i} + (1 - \sum_{j=2,...,i} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})) \cdot \mathsf{T} \qquad t_{\mathsf{R}}^- \geq \mathrm{t}_{\mathbf{e}_{i-1}} - (1 - \sum_{j=i,...,|\mathcal{E}|} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})) \cdot \mathsf{T}$

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility

Temporal Dependency Graph User Cuts

 $\forall v \in V_{dep}.$

$$\sum_{i=|\textit{dist}_{\max}^{+}(\textit{v})|+1}^{|\mathcal{R}|+1-|\textit{dist}_{\max}^{-}(\textit{v})|} \chi_{\textit{Event}}(\mathbf{e}_{i},\textit{v}) = 1$$

 $\forall v \in V_{dep}. \forall w \in dist_{\max}^{-}(v). \forall \mathbf{e}_i \in \mathcal{E}, dist_{\max}(v, w) + 1 \leq i \leq |\mathcal{R}|.$

$$\sum_{j=1}^{i} \chi_{Event}(\mathbf{e}_j, w) \leq \sum_{\substack{\mathbf{e}_j \in \mathcal{E} \\ \text{with } j \leq i - dist_{\max}^-(v, w)}} \chi_{Event}(\mathbf{e}_j, v)$$

Access Control & Resource Mapping

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility

Temporal Dependency Graph User Cuts

Some further optimizations

- Big-M constants are chosen as *tight* as possible
- virtual links can be aggregated if their virtual source or their virtual destination is the same

Greedy Heuristic $c\Sigma^G_A$

Greedy Heuristic $c\Sigma^G_A$

Greedy Heuristic $c\Sigma_A^G$

Setting

Node placements are fixed.

Outline

- Order requests according to their earliest start time.
- ${f 2}$ Iteratively try to embed requests as soon as possible using c Σ -Model
 - If the request was embedded: fix start and end time.

Greedy Heuristic $c\Sigma_A^G$

Setting

Node placements are fixed.

Outline

- Order requests according to their earliest start time.
- ${f e}$ Iteratively try to embed requests as soon as possible using c Σ -Model
 - If the request was embedded: fix start and end time.

Theorem: $c\Sigma_A^G$ is polynomial-time algorithm

There are maximally $\left|\mathcal{R}\right|$ many possible orderings to consider.

Important

All link allocations are re-computed in each iteration.

Computational Evaluation

Scenario: One day workload

- $\bullet~20$ requests (star-graphs) are to be embedded on 4×5 grid
- Expected inter-arrival time of one hour [Poisson]
- Expected duration of 3.5 hours [Weibull: heavy-tailed]
- Node-mappings are fixed to concentrate on temporal aspects
- Link-mappings are not fixed
- Increasing temporal flexibility: 0, 30, 60, ..., 300 minutes.

Computational Setup

- 24 independently generated scenarios
- Limited runtime of one hour for MIPs [Gurobi]

Task: Maximize revenue \propto load \cdot duration

- O Decide which requests to embed (access control).
- Ind time-invariant embedding (routing of data).
- O Decide when to embed the requests.

Computational Evaluation

Objective Gap: MIP Formulations

Runtime: MIP Formulations

Benefit of Flexibility

Performance of $c\Sigma_A^G$

Performance of $c\Sigma_A^G$

Conclusion

Related Work

MapReduce [5]

VNet Survey [2]

Google B4 [6]

- Chemical plants [3] Utilize similar event abstraction, but no resource sharing.
- Business Perspective [4] Marketplace based on temporal flexibilities.
 - Consider temporally predictable jobs (MapReduce-like) and allow for temporally interleaved resource sharing.
 - There is no comparable work on TVNEP.
 - Software-defined network (wide-area) connecting data centers. Only some dozen locations.

Future Work / Discussion

Modeling

- Consider flexible duration of requests.
- Consider delay-tolerant VNets.
- Consider more complex scenarios, e.g. migrations.

Algorithmic

- Incorporate other heuristical embedding approaches.
- Develop local-search algorithms for the TVNEP.

The End

Conclusion

References I

- N. Chowdhury, M. Rahman, and R. Boutaba. Virtual network embedding with coordinated node and link mapping. In Proc. of the IEEE INFOCOM '09, 2009.
- [2] A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach. Virtual network embedding: A survey. 2013.
- [3] C. A. Floudas and X. Lin. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review.

Computers & Chemical Engineering, 28(11), 2004.

- [4] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. A marketplace for cloud resources. In *Proc. of the ACM EMSOFT '10*, 2010.
- [5] L. Mai, E. Kalyvianaki, and P. Costa. Exploiting time-malleability in cloud-based batch processing systems. In Proceeding of the ACM SIGOPS LADIS Workshop '13, 2013.

Conclusion

References II

- [6] S. Jain et al.
 B4: experience with a globally-deployed software defined wan. In Proc. of the ACM SIGCOMM '13, 2013.
- [7] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang. Proteus: A topology malleable data center network. In Proc. of the ACM SIGCOMM HotNets Workshop '10, 2010.

Backup

Applications

Data center

- e.g. MapReduce cycles through different phases, traffic only during 30-60% of execution [7]
- price incentives for customers and providers to allow for / harness temporal flexibility [5]

Wide area networks

- Google uses SDN in the WAN to connect data centers [6]
- scheduling of bandwidth-intensive synchronizations
 - is necessary to achieve good utilization and resource isolation
 - is enabled by central SDN control