Optimal Virtualized In-Network Processing with Applications to Aggregation and Multicast M.Sc. Thesis Defense Talk

Matthias Rost

April 22nd, 2014 Technische Universität Berlin

Reviewer

Prof. Anja Feldmann, Ph.D., Technische Universität Berlin Prof. Dr. Andreas Bley, Universität Kassel

> Supervisor Dr. Stefan Schmid, Technische Universität Berlin

Mindset

Service Deployment \neq VNet Embedding

- Customer requests communication service between locations.
- Service provider *finds* an appropriate topology.

Communication Schemes: Multicast

Communication Schemes: Multicast

Communication Schemes: Aggregation

Communication Schemes: Aggregation

Problem Statement

Enablers: Network Virtualization, e.g. SDN + NFV

- Routes can be selected arbitrarily
- Network functions can be placed on specific nodes

Questions

- How to compute virtual aggregation / multicasting trees?
- Where to place in-network processing functionality?
- How to trade-off between traffic and processing?

Introductory Example

Without in-network processing: Unicast

Figure: Unicast solution

With in-network processing at all nodes

Introductory Example

How to Trade-off?

What we aim for

Introductory Example

Solution Structure

Figure: Virtual Arborescence

Figure: underlying routes

New Model: Constrained Virtual Steiner Arborescence Problem

Definition: CVSAP

Find a Virtual Arborescence connecting senders to the single receiver, s.t.

- Description of substrate is not exceeded,
- Inner nodes are capable of processing flow,
- It the processing nodes' capacities are not exceeded,

minimizing the joint cost for bandwidth allocations and function placement.

Service Replication

What if only '3' users can be handled?

	Network	Application	Technology, e.g.
multicast	ISP	service replication / cache placement [8, 9]	middleboxes / NFV + SDN
	backbone	optical multicast [5]	ROADM + SDH
	all	application-level multicast [12]	different
aggregation	sensor network	value & message aggrega- tion [4, 6]	source routing
	ISP	network analytics: Gigascope [3]	middleboxes / NFV + SDN
	data center	big data / map-reduce: Cam- doop [2]	SDN

Solution Approaches

Solution Approaches

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

17

Outline

Solution Approaches

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

Theorem: Inapproximability of CVSAP

Finding a feasible solution is NP-complete!

17

Outline

Solution Approaches

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

Theorem: Inapproximability of CVSAP

Finding a feasible solution is NP-complete!

Approximations

- polynomial
- quality guarantee
- weaker models

Exact Algorithms

- non-polynomial
- optimality
- full model

Heuristics

- polynomial
- no solution guarantee
- full model

Comprehensive algorithmic study

Algorithms

Approximations

- NVSTP
- VSTP
- VSAP

Exact Algorithms

- multi-commodity flow
- single-commodity flow
 - $\rightarrow \mathsf{VirtuCast}$

LP-based Heuristics

- FlowDecoRound
- MultipleShots
- GreedyDiving

Combinatorial Heuristic

GreedySelect

Approximation Algorithms for Variants

Variants

Approximation via related problems

Bottom Line

- Better understanding of how to incorporate virtualized links.
- Obtained lower bounds via reductions.

Exact Algorithms for CVSAP

Overview

Why exact algorithms matter

- allow trading-off runtime with solution quality
- baseline for heuristics

Choice: Integer Programming (IP)

- successfully employed for solving related problems (STP, CFLP, ...)
- generates lower bounds on-the-fly

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence
- necessitates independent construction of paths for all processing nodes

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence
- necessitates independent construction of paths for all processing nodes

Does not scale well

number of binary variables:
 #processing nodes · #edges

Integer Program 1: A-CVSAP-MCF

minimize

$$C_{MCF} = \sum_{e \in E_G} \mathbf{c}_e(f_e + \sum_{s \in S} f_{s,e})$$

$$+ \sum_{s \in S} \mathbf{c}_s \cdot \mathbf{x}_s$$
(MCF-OBJ)

bject to
$$f^{T}(\delta_{E_{\mathsf{MCF}}}^{+}(v)) = f^{T}(\delta_{E_{\mathsf{MCF}}}^{-}(v)) + |\{v\} \cap T| \qquad \forall v \in V_{\mathcal{G}}$$
 (MCF-1)

$$f^{s}(\delta^{+}_{E^{\mathsf{S}}_{\mathsf{MCF}}}(v)) = f^{s}(\delta^{-}_{E^{\mathsf{S}}_{\mathsf{MCF}}}(v)) + \delta_{s,v} \cdot x_{s} \qquad \forall \ s \in S, v \in V_{\mathsf{G}}$$
(MCF-2)

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_s \mathsf{x}_s, \ e = (s, o^-), s \in S \\ \mathbf{u}_r \quad , \ e = (r, o^-) \\ \mathbf{u}_e \quad , \ e \in E_G \end{cases} \quad \forall e \in E_{\mathsf{MCF}}$$
(MCF-3)

$$-|S|(1-f_{\overline{s},o^{-}}^{s}) \leq p_{s} - p_{\overline{s}} - 1 \qquad \forall s, \overline{s} \in S \qquad (\mathsf{MCF-4})$$

$$f^{s}_{(\bar{s},o^{-})} \leq x_{\bar{s}} \qquad \forall s \in S, \bar{s} \in S - s \qquad (\mathsf{MCF-5}^{\star})$$

$$f_{s,o^{-}}^{s} = 0 \qquad \forall s \in S \qquad (MCF-6^{*})$$

$$\begin{array}{ll} f_{\overline{s}, o^-}^s + f_{s, o^-}^{\overline{s}} \leq 1 & \forall s, \overline{s} \in S \\ x_s \in \{0, 1\} & \forall s \in S \end{array} \qquad (\mathsf{MCF-7}^*)$$

$$\begin{array}{ll} f_e^T \in \mathbb{Z}_{\geq 0} & \forall \ e \in E_{\mathsf{MCF}} & (\mathsf{MCF-9}) \\ f_e^s \in \ \{0,1\} & \forall \ s \in S, \ e \in E_{\mathsf{MCF}} & (\mathsf{MCF-10}) \\ p \in [0,|S|-1] & \forall \ s \in S & (\mathsf{MCF-11}) \end{array}$$

Optimal Virtualized In-Network Processing

Single-Commodity Flow IP

Single-commodity flow formulation

- computes aggregated flow on edges independently of the origin
- does not represent virtual arborescence

Figure: Single-commodity
Multi- vs Single-Commodity

Example: 6000 edges and 200 Steiner sites

- Single-commodity: 6000 integer variables
- Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity

Figure: Multi-commodity

VirtuCast Algorithm

VirtuCast Algorithm

Outline of VirtuCast

- Solve single-commodity flow IP formulation.
- Occompose IP solution into Virtual Arborescence.

Decomposing flow is non-trivial (5 pages proof)!

Flow solution ...

- contains cycles and
- represents *arbitrary* hierarchies.

Main Results

- decomposition is always feasible
- constructive proof: polynomial time algorithm

Integer Program 2: IP-A-CVSAP

minimize	$C_{IP}(x,f) = \sum_{e \in E_{C}} c_e f_e + \sum_{s \in S} c_s x_s$	((IP-OBJ)
subject to	$f(\delta_{E_{\text{ext}}}^+(v)) = f(\delta_{E_{\text{ext}}}^-(v))$	$\forall v \in V_{\mathcal{G}}$	(IP-1)
	$f(\delta^+_{E^R_{\mathrm{ext}}}(W)) \ge x_s$	$\forall W \subseteq V_G, s \in W \cap S \neq \emptyset$	(IP-2)
	$f(\delta^+_{E^R_{ ext{ext}}}(W)) \ge 1$	$\forall W \subseteq V_{\mathcal{G}}, T \cap W \neq \emptyset$	(IP-3*)
	$f_e \geq x_s$	$\forall \ e = (s, o_{S}^{-}) \in \mathit{E}_{ext}^{S^{-}}$	(IP-4*)
	$f_e \leq \mathbf{u}_s x_s$	$\forall \ e = (s, o_S^-) \in E_{ext}^{S^-}$	(IP-5)
	$f_{(r,o_r^-)} \leq \mathbf{u}_r$		(IP-6)
	$f_e \leq u_e$	$\forall \ e \in E_G$	(IP-7)
	$f_e = 1$	$\forall \ e \in E_{ext}^{\mathcal{T}^+}$	(IP-8)
	$f_e = x_s$	$\forall \ e = (o^+, s) \in E_{ext}^{\mathcal{S}^+}$	(IP-9)
	$x_s \in \{0,1\}$	$orall \ m{s} \in m{S}$	(IP-10)
	$f_e \in \mathbb{Z}_{\geq 0}$	$\forall \ e \in E_{ext}$	(IP-11)

Combinatorial Heuristic: GreedySelect

Combinatorial Heuristics

On Chickens and Eggs

- How and when to place processing nodes?
- How and when to reserve bandwidth for routes?
- How to react to infeasibilities?

Our Approach

- Place processing functionality and reserve bandwidth jointly.
- Try to avoid infeasibilities by proactive routing decisions.

GreedySelect Heuristic

Greedily either ...

- connect a single node to the connected component of the receiver or
- connect multiple nodes to an inactive processing node

minimizing the averaged discounted cost per connected node.

Selecting processing node + terminals + paths :
$$\mathcal{O}(|V| \cdot |E| + |V|^2 \log |V|)$$

compute $\mathcal{P}_{\bar{s}} \triangleq (\bar{s} \in \bar{S}, T' \subseteq \bar{T}, \mathcal{P}_{T'} = \{P_{t,\bar{s}} | t \in T'\})$,
such that $P_{t,\bar{s}}$ connects t to \bar{s} ,
 $u^{\bar{s}}(e) - |\mathcal{P}_{T'}[e]| \ge 0$ for all $e \in E_G$,
 $2 \le |T'| \le u_{r,S}(\bar{s})$
minimizing $c_{\bar{s},T'} \triangleq \left(\sum_{t \in T'} (c_E(P_{t,\bar{s}}) - c_E(P_{t,R})) + c_E(P_{\bar{s},R}) + c_S(\bar{s})\right) / |T'|$

LP-based Heuristics

Overview

Linear Relaxations

- The linear relaxation of an IP is obtained by relaxing the integrality constraints of the variables, thereby obtaining a Linear Program (LP).
- Solutions to linear relaxations are readily availabe when using branch-and-bound to solve an IP.
- May provide useful information to guide the construction of a solution.

Usage

- LP-based heuristics are employed within the VirtuCast *solver* to improve the bounding process.
- Yield polynomial time heuristics when used together with the root relaxation.

FlowDecoRound Heuristic

- computes a *flow* decomposition and connects nodes randomly according to the decomposition
- processing nodes are activated if another node node connects to it, must be connected itself
- failsafe: shortest paths

```
Algorithm 1: FlowDecoRound
     Input : Network G = (V_G, E_G, c_E, u_E), Request
                    R_G = (r, S, T, u_r, c_S, u_S),
                     LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{P} to Exact Algorithms
     Output: A Feasible Virtual Arborescence \hat{T}_{C} or null
 1 set \hat{S} \triangleq \emptyset and \hat{T} \triangleq \emptyset and U = T
  2 set \hat{V}_T \triangleq \{r\}, \hat{E}_T \triangleq \emptyset and \hat{\pi} : \hat{E}_T \rightarrow P_G
                            u_F(e), if e \in E_G
                                      , if e = (r, o_r^-)
, if e = (s, o_r^-) \in E_{res}^S
 3 set u(e) ≜
                                                                                   for all e \in E_{ext}
                                          else
 4 while U \neq 0 do
           choose t \in U uniformly at random and set U \leftarrow U - t
           set \Gamma_t \triangleq \text{MinCostFlow} \left( G_{\text{ext}}, \hat{f}, \hat{f}(o^+, t), t, \{o_s^-, o_r^-\} \right)
           set \hat{f} \leftarrow \hat{f} - \sum
 7
                                (P,f) \in \Gamma_t, e \in P
           set \Gamma_r \leftarrow \Gamma_r \setminus \{(P, f) \in \Gamma_r | \exists e \in P, u(e) = 0\}
           set \Gamma_t \leftarrow \Gamma_t \setminus \{(P, f) \in \Gamma_t | (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) \text{ is not acyclic } \}
 9
10
           if \Gamma_r \neq \emptyset then
                 choose (P, f) \in \Gamma_t with probability f / \left( \sum_{(P_i, f_i) \in \Gamma_t} f_j \right)
11
                 if P_{|P|-1} \notin \hat{V}_T then
12
13
                  set U \leftarrow U + P_{|P|-1} and \hat{V}_T \leftarrow \hat{V}_T + P_{|P|-1}
                 set \hat{V}_{\mathcal{T}} \leftarrow \hat{V}_{\mathcal{T}} + t and \hat{E}_{\mathcal{T}} \leftarrow \hat{E}_{\mathcal{T}} + (t, P_{|\mathcal{P}|-1})
14
                 and \hat{\pi}(t, P_{|P|-1}) \triangleq P
                 set u(e) \leftarrow u(e) - 1 for all e \in P
15
16 set u(e) \leftarrow 0 for all e = (s, o_s^-) \in E_{ext}^{S^-} with s \in S \land s \notin \hat{V}_T
17 set \overline{T} \triangleq (T \setminus \hat{V}_T) \cup (\{s \in S \cap \hat{V}_T | \delta_F^+ (s) = 0\})
18 for t \in \overline{T} do
          choose P \leftarrow \text{ShortestPath}(G_{evt}^u, c_E, t, \{o_c^-, o_r^-\})
19
                   such that (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) is acyclic
           if P = \emptyset then
20
21
            return null
           set \hat{V}_T \leftarrow \hat{V}_T + t and \hat{E}_T \leftarrow \hat{E}_T + (t, P_{|P|-1}) and \hat{\pi}(t, P_{|P|-1}) \triangleq P
22
          set u(e) \leftarrow u(e) - 1 for all e \in P
23
24 for e \in \hat{E}_T do
          set P \triangleq \hat{\pi}(e)
25
          set \hat{\pi}(e) \leftarrow \langle P_1, \dots, P_{|P|-1} \rangle
27 set \hat{T}_G \triangleq \text{Virtual Arborescence}(\hat{V}_T, \hat{E}_T, r, \hat{\pi})
28 return PruneSteinerNodes(T<sub>G</sub>)
```

Matthias Rost (TU Berlin) Optimal Virtualized I

Optimal Virtualized In-Network Processing

Intermezzo: VCPrimConnect

Important Observation

If all placed processing nodes are already connected, all senders can be assigned *optimally* using a minimum cost flow.

Outline

- connect all opened processing nodes in tree via a adaption of Prim's MST algorithm
- assign all sending nodes using min-cost flow

```
Algorithm 2: VCPrimConnect
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_G = (r, S, T, u_r, c_S, u_S),
                 Partial Virtual Arborescence \mathcal{T}_{G}^{P} = (V_{T}^{P}, E_{T}^{P}, r, \pi^{P})
    Output: Feasible Virtual Arborescence T_G = (V_T, E_T, r, \pi) or null
 1 set U \triangleq \{v | v \in V_T^P \setminus \{r\}, \delta_{rP}^+(v) = 0\}
 ? set \bar{S} \triangleq U ∩ S
 3 set V_T \triangleq V_T^P, E_T \triangleq E_T^P and \pi(u, v) = \pi^P(u, v) for all (u, v) \in E_T
4 set u(e) \triangleq u_E(e) - |\pi(E_T)[e]| for all e \in E_G
 5 while \overline{S} \neq \emptyset do
         compute R \leftarrow \{r' | r \in \{r\} \cup (V_T \cap S), r' \text{ reaches } r \text{ in } \mathcal{T}_G, \delta_{E_-}^-(r') < \mathcal{T}_G
 6
         u_r \leq (r')
         compute P = MinAllShortestPath(G<sup>u</sup>, c_E, \overline{S}, R)
 7
          if P = null then
 8
 9
              return null
10
         end
11
         set \bar{S} \leftarrow \bar{S} - P_1
         set E_T \leftarrow E_T + (P_1, P_{|P|}) and \pi(P_1, P_{|P|}) \triangleq P
12
        set u(e) \leftarrow u(e) - 1 for all e \in P
13
14 end
15 set \overline{T} \triangleq II \cap T
16 set u_V(r') \triangleq u_{r,S}(r') - \delta_{E_r}^-(r') for all r' \in \{r\} \cup (V_T \cap S)
17 compute \Gamma = \{P^{\overline{t}}\} \leftarrow \text{MinCostAssignment}(G, c_F, u, u_V, \overline{T}, \{r\} \cup V_T \cap S)
18 if \Gamma = \emptyset then
19 return null
20 end
21 set E_T \leftarrow E_T + (t, P_{|Pt|}^t) and \pi(t, P_{|Pt|}^t) \triangleq P^t for all P^t \in \Gamma
22 return T_G \triangleq (V_T, E_T, r, \pi)
```

MultipleShots

- treats node variables as probabilities and iteratively places processing functionality accordingly
- tries to generate a feasible solution in each round via VCPrimConnect

```
Algorithm 3: MultipleShots
    Input : Network G = (V_C, E_C, c_E, \mu_E). Request
                  R_G = (r, S, T, u_r, c_S, u_S),
                  LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{IP} to Exact Algorithms
    Output: A Feasible Virtual Arborescence \hat{T}_G or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s < 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
  3 set \hat{S}_1 \triangleq |S| \cup and \hat{S}_1 \triangleq [S]
 4 disableGlobalPrimalBound()
 5 repeat
          (\hat{x}, \hat{f}) \leftarrow solveSeparateSolve()
          if infeasibleLP() return null
          set |S| \triangleq \{s \in S | \hat{x}_s < 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
          addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
10
          set \hat{S}_1 \leftarrow \hat{S}_1 \cup |S| and \hat{S}_1 \leftarrow \hat{S}_1 \cup |S|
          set \hat{S} \triangleq S \setminus (\dot{S}_0 \cup \dot{S}_1)
11
          if \hat{S} \neq \emptyset then
12
13
                repeat
                      set Sı≜ Ŝ
14
15
                      remove s from S<sub>1</sub> with probability 1 - \lambda_s for all s \in S_1
                     if S_1 = \emptyset and |S \setminus (\dot{S}_1 \cup \dot{S}_1)| < 10 then
16
17
                           set S_1 \leftarrow S \setminus (\dot{S}_0 \cup \dot{S}_1)
18
                until S_1 \neq \emptyset
                addConstraintsLocally(\{x_s = 1 | s \in S_1\})
10
20
               set \dot{S}_1 \leftarrow \dot{S}_1 \cup S_1
           \hat{T}_{c}^{P} \triangleq (\hat{V}_{\tau}^{P}, \hat{E}_{\tau}^{P}, r, \emptyset) where \hat{V}_{\tau}^{P} \triangleq \{r\} \sqcup T \sqcup \hat{S}_{1} and \hat{E}_{\tau} \triangleq \emptyset
21
          set \hat{T}_{c} \triangleq VCPrimConnect(G, R_{c}, \hat{T}_{c}^{P})
22
          if \hat{T}_{c} \neq null then
23
              return PruneSteinerNodes(\hat{T}_G)
24
25 until \dot{S}_0 \cup \dot{S}_1 = S
26 return null
```

GreedyDiving

- aims at generating a feasible IP solution
- iteratively bounds at least a single variable from below, first fixing node variables
- complex failsafe:
 PartialDecompose + VCPrimConnect

```
Algorithm 4: GreedyDiving
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_{c} = (r, S, T, u_r, c_S, u_S),
                 LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{P} to Exact Algorithms
    Output: A Feasible Virtual Arborescence \hat{T}_{C} or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
 3 set \dot{S} \triangleq |S| \cup [S] and \dot{E} \triangleq \emptyset
 4 do
         (\hat{x}', \hat{f}') \leftarrow \text{solveSeparateSolve}()
         if infeasibleLP() and \dot{S} = S then
7
               break
.
         else if infeasibleLP() or objectiveLimit() then
               return null
 9
          set (\hat{x}, \hat{f}) \leftarrow (\hat{x}', \hat{f}')
10
11
         if \dot{S} \neq S then
               set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
12
13
               addConstraintsLocally(\{x_i = 0 | s \in |S|\} \cup \{x_i = 1 | s \in [S]\})
14
               set \dot{S} \leftarrow \dot{S} \cup |S| \cup [S]
15
               setŜ≜S∖Ś
               if \hat{S} \neq \emptyset then
16
                    choose \hat{s} \in \hat{S} with c_S(\hat{s})/\hat{x}_{\hat{s}} minimal
17
18
                     addConstraintsLocally({x_i = 1})
19
                    set \dot{S} \leftarrow \dot{S} + \hat{s}
          else if \dot{F} \neq F_{max} then
20
               set |E| \triangleq \{e \in E_{evt} | |\hat{f}_e - |\hat{f}_e| | \le 0.001\}.
21
               [E] \triangleq \{e \in E_{evt} | |\hat{f}_e - [\hat{f}_e]| \le 0.001\}
               addConstraintsLocally(\{f_e = |\hat{f}_e| | e \in |E|\} \cup \{f_e = [\hat{f}_e] | e \in
22
               [E]}
               set E \leftarrow E \cup |E| \cup [E]
23
24
               set \hat{E} \triangleq E_{m} \setminus \hat{E}
               if \hat{F} \neq \emptyset then
25
                    choose \hat{e} \in \hat{E} with \lceil \hat{f}_{\hat{e}} \rceil - \hat{f}_{\hat{e}} minimal
26
                     addConstraintsLocally(\{\hat{f}_k \ge [\hat{f}_k]\})
27
                    set \dot{E} \leftarrow \dot{E} + \hat{e}
28
29
30
               break
31 set \hat{f}_e \leftarrow |\hat{f}_e| for all e \in E_{evt} \setminus \hat{E}
32 set \hat{T}_{G}^{P} \leftarrow \text{PartialDecompose}(G, R_{G}, (\hat{x}, \hat{f}))
33 return VCPrimConnect(G. Rc. Tr)
```

Computational Evaluation

Setup

Topologies

An ISP topology generated by IGen with 2400 nodes.

Instances

Generation Parameters

- five graph sizes I-V
- 15 instances per graph size: different Steiner costs, different edge capacities

	Nodes	Edges	Processing Locations	Senders
Fat tree	1584	14680	720	864
3D torus	1728	10368	432	864
IGen	4000	16924	401	800

Table: Largest graph sizes

Setup

Computational Setup

Implementation

- all algorithms (except MCF-IP) are implemented in C/C++
- VirtuCast uses SCIP [1], many different parameters to consider
 - separation
 - branching
 - heuristics
 - . . .
- MCF-IP is implemented using GMPL + CPLEX

Objective

Solve instances within reasonable time: 1 hour runtime limit

VirtuCast + LP-based Heuristics

VirtuCast + LP-based Heuristics

Matthias Rost (TU Berlin)

Optimal Virtualized In-Network Processing

MCF-IP

MCF-IP: Performance

GreedySelect

GreedySelect: Efficacy

GreedySelect: Performance

LP-based Heuristics

LP-based Heuristics: Efficacy

Matthias Rost (TU Berlin)

Optimal Virtualized In-Network Processing

LP-based Heuristics: Performance on graph size V

Matthias Rost (TU Berlin) **Optimal Virtualized In-Network Processing**

Summary

Publications

Matthias Rost, Stefan Schmid: OPODIS 2013 & arXiv [11, 10]

 $\mathsf{Applications} \to \mathsf{Concise} \ \mathsf{definition} \ \mathsf{of} \ \mathsf{CVSAP}$

Algorithmic Study

Inapproximability

Approximations

- NVSTP
- VSTP
- VSAP

Exact Algorithms

- multi-commodity flow
- single-commodity flow \rightarrow VirtuCast

Heuristics

- FlowDecoRound
- MultipleShots
- GreedyDiving
- GreedySelect

Extensive explorative Computational Evaluation

Related Work

Molnar: Constrained Spanning Tree Problems [7]

• Shows that optimal solution is a 'spanning hierarchy' and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [9]

- Consider a weaker variant of multicasting CVSAP without bandwidth
- Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [12]

• Provided heuristic and showed improvement in scalability.

Future Work

Model Extensions

- prize-collecting variants
- concurrent multicast / aggregation sessions

Application Modeling

- Stratosphere II: Big Data
- UNIFY Project: flow analytics

IP formulation

• try to derive further cuts / facets

Future Work

Thanks

References I

- T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Computation, 1(1):1–41, 2009.
- P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea.
 Camdoop: Exploiting In-network Aggregation for Big Data Applications. In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2012.
- [3] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
 Gigascope: A Stream Database for Network Applications.
 In Proc. ACM SIGMOD International Conference on Management of Data, pages 647–651, 2003.
- M. Ding, X. Cheng, and G. Xue.
 Aggregation tree construction in sensor networks.
 In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4, pages 2168–2172. IEEE, 2003.
- [5] C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm. Ethernet aggregation and core network models for effcient and reliable iptv services. *Bell Labs Technical Journal*, 12(1):57–76, 2007.

References II

 [6] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in wireless sensor networks. In *IEEE infocom*, volume 2, pages 39–44, 2002.

- [7] M. Molnár. Hierarchies to Solve Constrained Connected Spanning Problems. Technical Report Irimm-00619806, University Montpellier 2, LIRMM, 2011.
- [8] S. Narayana, W. Jiang, J. Rexford, and M. Chiang. Joint Server Selection and Routing for Geo-Replicated Services. In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.
- [9] C. Oliveira and P. Pardalos.

Streaming cache placement.

In *Mathematical Aspects of Network Routing Optimization*, Springer Optimization and Its Applications, pages 117–133. Springer New York, 2011.

[10] M. Rost and S. Schmid.

The Constrained Virtual Steiner Arborescence Problem: Formal Definition, Single-Commodity Integer Programming Formulation and Computational Evaluation. Technical report, arXiv, 2013.

References III

[11] M. Rost and S. Schmid.

Virtucast: Multicast and aggregation with in-network processing.

In R. Baldoni, N. Nisse, and M. Steen, editors, *Principles of Distributed Systems*, volume 8304 of *Lecture Notes in Computer Science*, pages 221–235. Springer International Publishing, 2013.

[12] S. Shi.

A proposal for a scalable internet multicast architecture.

In Washington University, 2001.
Backup Decomposition Example

Example

Example

Backup Decomposition Example

Example

Redirecting Flow

Violation of Connectivity Inequality

$$f(\delta^+_{E^R_{\mathrm{ext}}}(W)) \ge x_s \qquad \forall \ W \subseteq V_G, s \in W \cap S \neq \emptyset$$

Redirecting Flow

S

There exists a path from v towards o_s^- in W.

Reasoning

- Flow preservation holds within W.
- 2 s could reach o_r^- via v before the reduction of flow.
- v receives at least one unit of flow.
- I Flow leaving v must eventually terminate at o_S.

Redirecting Flow

Redirection towards o_S^- is possible!

There exists a path from v towards o_s^- in W.

Reasoning

- Flow preservation holds within W.
- 2 s could reach o_r^- via v before the reduction of flow.
- v receives at least one unit of flow.
- Flow leaving v must eventually terminate at o_s^- .

Backup

Decomposition Example

Decomposition Example II

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing

Backup

Decomposition Example

Backup

Decomposition Example

Final Solution

Related Work

Molnar: Constrained Spanning Tree Problems [7]

• Shows that optimal solution is a 'spanning hierarchy' and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [9]

- Consider a weaker variant of multicasting CVSAP without bandwidth
- Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [12]

Provided heuristic and showed improvement in scalability.