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Virtualized In-Network Processing

Communication Schemes: Multicast (same old! same old?)

processing = duplication + reroute

sender

receiver

receiver

receiver
processing node

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 2



Virtualized In-Network Processing
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processing = duplication + reroute
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Virtualized In-Network Processing

Communication Schemes: Aggregation

processing = merge + reroute

sender

receiver

processing node

sender

sender
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Virtualized In-Network Processing

Problem Statement

Setting: Network Virtualization

(Unsplittable) routes can be established arbitrarily
(e.g. using Software-Defined Networks)
Processing functionality can be placed on specific nodes
(e.g. using Network Functions Virtualization)

Main Questions
How to compute virtual aggregation / multicasting trees?

Where to place in-network processing functionality?
How to trade-off between traffic and processing?
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Virtualized In-Network Processing Introductory Example

Introductory Example

Aggregation scenario
bi-directed grid graph

receiver sender
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Virtualized In-Network Processing Introductory Example

Without in-network processing: Unicast

Solution Method
minimal cost flow

Solution uses
41 edges
0 processing nodes

receiver sender

Figure: Unicast solution
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Virtualized In-Network Processing Introductory Example

With in-network processing at all nodes

Solution Method
Steiner arborescence

Solution uses
16 edges
9 processing nodes

receiver

processing

sender

sender with
processingnode

Figure: Aggregation tree
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Virtualized In-Network Processing Introductory Example

How to Trade-off?

vs.
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Virtualized In-Network Processing Introductory Example

What we aim for

Solution uses
26 edges
2 processing
nodes

receiver

processing

sender

node
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Virtualized In-Network Processing Introductory Example

Solution Structure

Figure: Virtual Arborescence Figure: underlying routes
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Virtualized In-Network Processing Introductory Example

Input

Definition (Network G = (VG ,EG , cE , uE ) )

integral capacities on the edges uE : EG → N
positive edge costs cE : EG → R+

Definition (Abstract Communication Request)

An abstract communication request on a graph G is defined as a 5-tuple
RG = (r , S ,T , ur , cS , uS), where

T ⊆ VG is the set of terminals,
r ∈ VG \ T denotes the root with integral capacity ur ∈ N and
S ⊆ VG \ ({r} ∪ T ) denotes the set of possible Steiner sites with
associated activation costs cS : S → R+ and integral capacities
uS : S → N.
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Virtualized In-Network Processing Introductory Example

Virtual Arborescence

Definition (Virtual Arborescence on G : TG = (VT ,ET , r , π))

{r} ⊆ VT ⊆ VG and ET ⊆ VT × VT
π : ET → PG maps each edge of ET on a (simple) path P ∈ PG , s.t.

(VA-1) (VT ,ET , r) is an rooted arborescence with edges either
directed towards or away from r ,

(VA-2) for all (u, v) ∈ ET the directed path π(u, v) connects u to v
in G .
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Virtualized In-Network Processing Introductory Example

Definition (Constrained Virtual Steiner Arborescence Problem)

Input: network G = (VG ,EG , cE , uE ), request RG = (r , S ,T , ur , cS , uS).
Task: Find a minimal cost Virtual Arborescence TG = (VT ,ET , r , π)
satisfying:

(CVSAP-1) {r} ∪ T ⊆ VT and VT ⊆ {r} ∪ S ∪ T ,
(CVSAP-2) for all t ∈ T holds δ+

ET (t) + δ−ET (t) = 1,

(CVSAP-3) for the root δ+
ET (r) + δ−ET (r) ≤ ur holds,

(CVSAP-4) for all s ∈ S ∩ VT holds δ−ET (s) + δ+
ET (s) ≤ uS(s) + 1 and

(CVSAP-5) for all e ∈ EG holds | (π(ET )) [e]| ≤ uE (e).
The cost of a Virtual Arborescence is defined to be

CCVSAP(TG ) =
∑
e∈EG

cE (e) · | (π(ET )) [e]|+
∑

s∈S∩VT

cS(s) ,

where | (π(ET )) [e]| denotes the number of times an edge is used.
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Virtualized In-Network Processing Applications

Applications

Network Application Technology, e.g.

m
ul

ti
ca

st ISP
service replication / cache
placement [10, 11]

middleboxes / NFV
+ SDN

backbone optical multicast [6] ROADM + SDH

all application-level multicast [16] different

ag
gr

eg
at

io
n

sensor
network

value & message aggrega-
tion [5, 8]

source routing

ISP
network analytics: Gigascope
[3]

middleboxes / NFV
+ SDN

data center
big data / map-reduce: Cam-
doop [2]

SDN

edge capacities processing node locations processing node capacities
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Virtualized In-Network Processing Applications

Service Replication
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Virtualized In-Network Processing Applications

Service Replication
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Virtualized In-Network Processing Applications

Service Replication

What if backend links are congested?
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Virtualized In-Network Processing Applications

Service Replication
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Virtualized In-Network Processing Applications

Service Replication

What if only ‘3’ users can be handled?
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Virtualized In-Network Processing Applications

Service Replication
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Solution Approaches Outline

Comprehensive algorithmic study

Computational Complexity
(Inapproximability)

Approximation
Algorithms

Exact Algorithms (MIPs) LP-based Heuristics

M.Sc. Thesis [13] Matthias Rost (Advisors: Schmid, Bley, Feldmann)
Optimal Virtualized In-Network Processing with Applications to
Aggregation and Multicast, TU Berlin ’14

Conference [15] Matthias Rost and Stefan Schmid
VirtuCast, Multicast and Aggregation with In-Network Processing,
OPODIS ’13

Tech. Report [14] Matthias Rost and Stefan Schmid
The Constrained Virtual Steiner Arborescence Problem: Formal
Definition, Single-Commodity Integer Programming Formulation
and Computational Evaluation, arXiv ’13
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Solution Approaches Inapproximability

Inapproximability

Reduction via Set Cover: Does a set cover of size X exist?

1

2

3

4

5

capacity: X

1

2

3

4

5

Theorem
Finding a feasible solution is already NP-complete.
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Approximation Algorithms for Variants



Solution Approaches Approximation Algorithms

Variants

Directed Undirected

edge and node capacities CVSAP CVSTP

node capacities NVSAP NVSTP

no capacities VSAP VSTP
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Solution Approaches Approximation Algorithms

Approximation via related problems

Results

Directed Undirected

both capacities CVSAP CVSTP

node capacities NVSAP NVSTP DNSTP

no capacities SAP VSAP VSTP CFLP

O(log, log)

O(log) 8
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Exact Algorithms for CVSAP



Solution Approaches Approximation Algorithms

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP
explicitly represent virtual
arborescence
necessitates independent
construction of paths for all
processing nodes
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Solution Approaches Approximation Algorithms

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP
explicitly represent virtual
arborescence
necessitates independent
construction of paths for all
processing nodes

Intuition: does not scale well
number of binary variables:
#Steiner sites · #edges
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Solution Approaches Approximation Algorithms

Integer Program 1: A-CVSAP-MCF

minimize CMCF =
∑
e∈EG

ce(fe +
∑
s∈S

fs,e) (MCF-OBJ)

+
∑
s∈S

cs · xs

subject to f T (δ+
EMCF

(v)) = f T (δ−EMCF
(v)) + |{v} ∩ T | ∀ v ∈ VG (MCF-1)

f s(δ+
ES

MCF
(v)) = f s(δ−ES

MCF
(v)) + δs,v · xs ∀ s ∈ S , v ∈ VG (MCF-2)

f T
e +

∑
s∈S

f s
e ≤


usxs , e = (s, o−), s ∈ S
ur , e = (r , o−)

ue , e ∈ EG

∀e ∈ EMCF (MCF-3)

−|S |(1− f s
s̄,o−) ≤ps − ps̄ − 1 ∀ s, s̄ ∈ S (MCF-4)

f s
(s̄,o−) ≤ xs̄ ∀ s ∈ S , s̄ ∈ S − s (MCF-5?)

f s
s,o− =0 ∀ s ∈ S (MCF-6?)

f s
s̄,o− + f s̄

s,o− ≤1 ∀ s, s̄ ∈ S (MCF-7?)

xs ∈ {0, 1} ∀ s ∈ S (MCF-8)

f T
e ∈ Z≥0 ∀ e ∈ EMCF (MCF-9)
f s
e ∈ {0, 1} ∀ s ∈ S , e ∈ EMCF (MCF-10)
p ∈ [0, |S | − 1] ∀ s ∈ S (MCF-11)
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Solution Approaches Approximation Algorithms
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Solution Approaches Approximation Algorithms

Integer Program 3: A-CVSAP-MCF

minimize CMCF =
∑
e∈EG

ce(fe +
∑
s∈S

fs,e) (MCF-OBJ)

+
∑
s∈S

cs · xs

subject to f T (δ+
EMCF

(v)) = f T (δ−EMCF
(v)) + |{v} ∩ T | ∀ v ∈ VG (MCF-1)

f s(δ+
ES

MCF
(v)) = f s(δ−ES

MCF
(v)) + δs,v · xs ∀ s ∈ S , v ∈ VG (MCF-2)

f T
e +

∑
s∈S

f s
e ≤


usxs , e = (s, o−), s ∈ S
ur , e = (r , o−)

ue , e ∈ EG

∀e ∈ EMCF (MCF-3)

−|S |(1− f s
s̄,o−)≤ ps − ps̄ − 1 ∀ s, s̄ ∈ S (MCF-4)

f s
(s̄,o−) ≤ xs̄ ∀ s ∈ S , s̄ ∈ S − s (MCF-5?)

f s
s,o− =0 ∀ s ∈ S (MCF-6?)

f s
s̄,o− + f s̄

s,o− ≤1 ∀ s, s̄ ∈ S (MCF-7?)

xs ∈ {0, 1} ∀ s ∈ S (MCF-8)

f T
e ∈ Z≥0 ∀ e ∈ EMCF (MCF-9)
f s
e ∈ {0, 1} ∀ s ∈ S , e ∈ EMCF (MCF-10)
p∈ [0, |S | − 1] ∀ s ∈ S (MCF-11)
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Solution Approaches Approximation Algorithms

Integer Program 4: A-CVSAP-MCF

minimize CMCF =
∑
e∈EG

ce(fe +
∑
s∈S

fs,e) (MCF-OBJ)

+
∑
s∈S

cs · xs

subject to f T (δ+
EMCF

(v)) = f T (δ−EMCF
(v)) + |{v} ∩ T | ∀ v ∈ VG (MCF-1)

f s(δ+
ES

MCF
(v)) = f s(δ−ES

MCF
(v)) + δs,v · xs ∀ s ∈ S , v ∈ VG (MCF-2)

f T
e +

∑
s∈S

f s
e ≤


usxs , e = (s, o−), s ∈ S
ur , e = (r , o−)

ue , e ∈ EG

∀e ∈ EMCF (MCF-3)

−|S |(1− f s
s̄,o−) ≤ps − ps̄ − 1 ∀ s, s̄ ∈ S (MCF-4)

f s
(s̄,o−) ≤ xs̄ ∀ s ∈ S , s̄ ∈ S − s (MCF-5?)

f s
s,o− =0 ∀ s ∈ S (MCF-6?)

f s
s̄,o− + f s̄

s,o− ≤1 ∀ s, s̄ ∈ S (MCF-7?)

xs ∈ {0, 1} ∀ s ∈ S (MCF-8)

f T
e ∈ Z≥0 ∀ e ∈ EMCF (MCF-9)
f s
e ∈ {0, 1} ∀ s ∈ S , e ∈ EMCF (MCF-10)
p ∈ [0, |S | − 1] ∀ s ∈ S (MCF-11)
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Solution Approaches Approximation Algorithms

Single-Commodity Flow IP

Single-commodity flow formulation
computes aggregated flow on edges independently of the origin
does not represent virtual arborescence

Figure: Single-commodity
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Solution Approaches Approximation Algorithms

Multi- vs Single-Commodity

Example: 6000 edges and 200 Steiner sites
Single-commodity: 6000 integer variables
Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity Figure: Multi-commodity
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Solution Approaches Approximation Algorithms

VirtuCast Algorithm

Outline of VirtuCast
1 Solve single-commodity flow IP formulation.
2 Decompose IP solution into Virtual Arborescence.

How to
decompose?

(a) IP solution

→

(b) Virtual Arborescence
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IP Formulation



Solution Approaches Approximation Algorithms

Extended Graph

Additional nodes

source o+

sinks o−r and o−S

Additional edges

o−r

o−S

o+

receiver

Steiner

sender

site
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Solution Approaches Approximation Algorithms

IP Formulation I

minimize CIP(x , f ) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+
Eext

(v)) = f (δ−Eext
(v)) ∀ v ∈ VG

f (δ+
ER

ext
(W )) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe =1 ∀ e = (o+, t) ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext
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Solution Approaches Approximation Algorithms

Connectivity Inequalities

STP Excursion [7]

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+
ER

ext
(W )) ≥ xs

‘From each activated Steiner site, there exists a path towards o−r .’

Exponentially many constraints, but . . .
. . . can be separated in polynomial time.

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 37



Solution Approaches Approximation Algorithms

Connectivity Inequalities

STP Excursion [7]

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+
ER

ext
(W )) ≥ xs

‘From each activated Steiner site, there exists a path towards o−r .’

Exponentially many constraints, but . . .
. . . can be separated in polynomial time.

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 37



Solution Approaches Approximation Algorithms

Complete Formulation

minimize CIP(x , f ) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+
Eext

(v)) = f (δ−Eext
(v)) ∀ v ∈ VG

f (δ+
ER

ext
(W )) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe ≤usxs ∀ e = (s, o−S ) ∈ ES−
ext

f(r ,o−r ) ≤ur

fe ≤ue ∀ e ∈ EG

fe =1 ∀ e ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 38



Solution Approaches Approximation Algorithms

Decomposing flow is non-trivial!

Flow solution . . .
contains cycles and
represents arbitrary hierarchies.

However, . . .
decomposition is always feasible
constructive proof:
polynomial time algorithm
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Solution Approaches Approximation Algorithms

Outline of Decomposition Algorithm

Decomposition Approach
1 select a terminal t ∈ T
2 construct path P from t towards o−r
3 reduce flow along edges in P, s.t. connectivity inequalities are valid
4 connect t to the second last node of P and remove t
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Solution Approaches Approximation Algorithms

Outline of Decomposition Algorithm

Reduced problem must be feasible
Removing flow must not invalidate any connectivity inequalities.

Principle: Repair & Redirect
decrease flow on path edge by edge
if connectivity inequalities are violated

repair increment flow on edge to regain feasibility
redirect choose a different path from current node

Theorem
Given an optimal solution, the Decompososition Algorithm computes a
Virtual Arborescence in time O

(
|VG |2 · |EG | · (|VG |+ |EG |)

)
.
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Solution Approaches Decomposition Example

Example

Scenario

receiver

Steiner

sender

site
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Solution Approaches Decomposition Example

Example

Extended Graph

o−r

o−S o+

receiver

Steiner

sender

site
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Solution Approaches Decomposition Example

Example

Solution

o−r

o−S o+

1 1 1

11

1

1 1

1

1

1

3

receiver

Steiner

sender

site

activated
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Solution Approaches Decomposition Example

Decomposition Example I

o−r

o−S o+

t1

vr

s
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Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s
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Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+
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s
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Solution Approaches Decomposition Example
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Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉
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Solution Approaches Decomposition Example

Redirecting Flow

o−r

o−S o+

t1

vr

s

W

Violation of Connectivity Inequality

f (δ+
ER

ext
(W )) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅
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Solution Approaches Decomposition Example

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .
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Solution Approaches Decomposition Example
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Redirection towards o−S is possible!
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Solution Approaches Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s
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Solution Approaches Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s
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Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
,v
,s
〉

t1

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 46



Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉
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Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉
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Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉
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Solution Approaches Decomposition Example

Decomposition Example II

Final Solution

s

〈t1 , v, s〉
t1

t2

t3

〈t2, s〉

〈t3,
s〉

r
〈s, v, r〉
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Solution Approaches LP-based Heuristics

Overview

Linear Relaxations
The linear relaxation of an IP is obtained by relaxing the integrality
constraints of the variables, thereby obtaining a Linear Program (LP).
Solutions to linear relaxations are readily availabe when using
branch-and-bound to solve an IP.
May provide useful information to guide the construction of a solution.

Usage
LP-based heuristics are employed within the VirtuCast solver to
improve the bounding process.
Yield polynomial time heuristics when used together with the root
relaxation.

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 48



Solution Approaches LP-based Heuristics

FlowDecoRound Heuristic

• computes a flow decomposition and
connects nodes randomly according to
the decomposition
• processing nodes are activated if

another node node connects to it,
must be connected itself
• failsafe: shortest paths

Algorithm 1: FlowDecoRound
Input : Network G = (VG ,EG , cE , uE ), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂ ) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set Ŝ , ∅ and T̂ , ∅ and U = T
2 set V̂T , {r}, ÊT , ∅ and π̂ : ÊT → PG

3 set u(e) ,


uE (e) , if e ∈ EG

ur (r) , if e = (r , o−r )

uS(s) , if e = (s, o−S ) ∈ ES−
ext

1 , else

for all e ∈ Eext

4 while U 6= ∅ do

5 choose t ∈ U uniformly at random and set U ← U − t

6 set Γt , MinCostFlow
(
Gext, f̂ , f̂ (o+, t), t, {o−S , o−r }

)
7 set f̂ ← f̂ − ∑

(P,f )∈Γt ,e∈P
f

8 set Γt ← Γt \ {(P, f ) ∈ Γt |∃e ∈ P.u(e) = 0}
9 set Γt ← Γt \ {(P, f ) ∈ Γt |(V̂T + t, ÊT + (t,P|P|−1)) is not acyclic }

10 if Γt 6= ∅ then
11 choose (P, f ) ∈ Γt with probability f /

(∑
(Pj ,fj )∈Γt

fj
)

12 if P|P|−1 /∈ V̂T then
13 set U ← U + P|P|−1 and V̂T ← V̂T + P|P|−1
14 set V̂T ← V̂T + t and ÊT ← ÊT + (t,P|P|−1)

and π̂(t,P|P|−1) , P
15 set u(e)← u(e)− 1 for all e ∈ P

16 set u(e)← 0 for all e = (s, o−S ) ∈ ES−
ext with s ∈ S ∧ s /∈ V̂T

17 set T̄ , (T \ V̂T ) ∪ ({s ∈ S ∩ V̂T |δ+

ÊT
(s) = 0})

18 for t ∈ T̄ do

19 choose P ← ShortestPath
(
Gu
ext, cE , t, {o−S , o−r }

)
such that (V̂T + t, ÊT + (t,P|P|−1)) is acyclic

20 if P = ∅ then
21 return null

22 set V̂T ← V̂T + t and ÊT ← ÊT + (t,P|P|−1) and π̂(t,P|P|−1) , P
23 set u(e)← u(e)− 1 for all e ∈ P

24 for e ∈ ÊT do
25 set P , π̂(e)
26 set π̂(e)← 〈P1, . . . ,P|P|−1〉
27 set T̂G , Virtual Arborescence (V̂T , ÊT , r , π̂)

28 return PruneSteinerNodes(T̂G)
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Solution Approaches LP-based Heuristics

Intermezzo: VCPrimConnect

Important Observation
If all placed processing nodes are already
connected, all senders can be assigned
optimally using a minimum cost flow.

Outline
1 connect all opened processing nodes

in tree via a adaption of Prim’s
MST algorithm

2 assign all sending nodes using
min-cost flow

Algorithm 2: VCPrimConnect
Input : Network G = (VG ,EG , cE , uE ), Request

RG = (r , S ,T , ur , cS , uS),
Partial Virtual Arborescence T P

G = (V P
T ,E

P
T , r , π

P)
Output: Feasible Virtual Arborescence TG = (VT ,ET , r , π) or null

1 set U , {v |v ∈ V P
T \ {r}, δ+

EP
T

(v) = 0}
2 set S̄ , U ∩ S
3 set VT , V P

T , ET , EP
T and π(u, v) = πP(u, v) for all (u, v) ∈ ET

4 set u(e) , uE (e)− |π(ET )[e]| for all e ∈ EG
5 while S̄ 6= ∅ do

6 compute R ← {r ′|r ∈ {r} ∪ (VT ∩ S), r ′ reaches r in TG , δ−ET (r ′) <
ur ,S(r ′)}

7 compute P = MinAllShortestPath(Gu, cE , S̄ ,R)

8 if P = null then
9 return null

10 end
11 set S̄ ← S̄ − P1

12 set ET ← ET + (P1,P|P|) and π(P1,P|P|) , P
13 set u(e)← u(e)− 1 for all e ∈ P
14 end

15 set T̄ , U ∩ T
16 set uV (r ′) , ur ,S(r ′)− δ−ET (r ′) for all r ′ ∈ {r} ∪ (VT ∩ S)

17 compute Γ = {P t̄} ← MinCostAssignment(G , cE , u, uV , T̄ , {r}∪VT ∩S)

18 if Γ = ∅ then
19 return null
20 end
21 set ET ← ET + (t,Pt

|Pt |) and π(t,Pt
|Pt |) , Pt for all Pt ∈ Γ

22 return TG , (VT ,ET , r , π)
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Solution Approaches LP-based Heuristics

MultipleShots

• treats node variables as probabilities
and iteratively places processing
functionality accordingly
• tries to generate a feasible solution in

each round via VCPrimConnect

Algorithm 3: MultipleShots
Input : Network G = (VG ,EG , cE , uE ), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂ ) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
2 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})
3 set Ṡ0 , bSc∪ and Ṡ1 , dSe
4 disableGlobalPrimalBound()

5 repeat
6 (x̂ , f̂ )← solveSeparateSolve()
7 if infeasibleLP() return null
8 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
9 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe} )

10 set Ṡ0 ← Ṡ0 ∪ bSc and Ṡ1 ← Ṡ1 ∪ dSe
11 set Ŝ , S \ (Ṡ0 ∪ Ṡ1)

12 if Ŝ 6= ∅ then

13 repeat
14 set S1 , Ŝ
15 remove s from S1 with probability 1− x̂s for all s ∈ S1
16 if S1 = ∅ and |S \ (Ṡ0 ∪ Ṡ1)| < 10 then

17 set S1 ← S \ (Ṡ0 ∪ Ṡ1)

18 until S1 6= ∅
19 addConstraintsLocally({xs = 1|s ∈ S1})
20 set Ṡ1 ← Ṡ1 ∪ S1

21 T̂ P
G , (V̂ P

T , Ê
P
T , r , ∅) where V̂ P

T , {r} ∪ T ∪ Ṡ1 and ÊT , ∅
22 set T̂G ,VCPrimConnect(G ,RG , T̂ P

G )
23 if T̂G 6= null then
24 return PruneSteinerNodes(T̂G)
25 until Ṡ0 ∪ Ṡ1 = S
26 return null
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Solution Approaches LP-based Heuristics

GreedyDiving

• aims at generating a feasible IP
solution
• iteratively bounds at least a single

variable from below, first fixing node
variables
• complex failsafe:

PartialDecompose + VCPrimConnect

Algorithm 4: GreedyDiving
Input : Network G = (VG ,EG , cE , uE ), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂ ) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
2 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})
3 set Ṡ , bSc ∪ dSe and Ė , ∅
4 do

5 (x̂ ′, f̂ ′)← solveSeparateSolve()

6 if infeasibleLP() and Ṡ = S then

7 break

8 else if infeasibleLP() or objectiveLimit() then

9 return null

10 set (x̂ , f̂ )← (x̂ ′, f̂ ′)
11 if Ṡ 6= S then

12 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
13 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe} )
14 set Ṡ ← Ṡ ∪ bSc ∪ dSe
15 set Ŝ , S \ Ṡ
16 if Ŝ 6= ∅ then

17 choose ŝ ∈ Ŝ with cS(ŝ)/x̂ŝ minimal
18 addConstraintsLocally({xŝ = 1})
19 set Ṡ ← Ṡ + ŝ

20 else if Ė 6= Eext then

21 set bEc , {e ∈ Eext| |f̂e − bf̂ec| ≤ 0.001},
dEe , {e ∈ Eext| |f̂e − df̂ee| ≤ 0.001}

22 addConstraintsLocally({fe = bf̂ec|e ∈ bEc} ∪ {fe = df̂ee|e ∈
dEe}

23 set Ė ← Ė ∪ bEc ∪ dEe
24 set Ê , Eext \ Ė
25 if Ê 6= ∅ then

26 choose ê ∈ Ê with df̂êe − f̂ê minimal
27 addConstraintsLocally({f̂ê ≥ df̂êe})
28 set Ė ← Ė + ê

29 else
30 break

31 set f̂e ← bf̂ec for all e ∈ Eext \ Ė
32 set T̂ P

G ← PartialDecompose (G ,RG , (x̂ , f̂ ))
33 return VCPrimConnect(G ,RG , T̂ P

G )
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Computational Evaluation Setup

Topologies

3D torus Fat tree

An ISP topology generated by IGen with 2400 nodes.
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Computational Evaluation Setup

Instances

Generation Parameters
five graph sizes I-V
15 instances per graph size: different Steiner costs, different edge
capacities

Nodes Edges Processing Locations Senders
Fat tree 1584 14680 720 864
3D torus 1728 10368 432 864

IGen 4000 16924 401 800

Table: Largest graph sizes
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Computational Evaluation Setup

Computational Setup

Implementation

all algorithms (except MCF-IP) are implemented in C/C++
VirtuCast uses SCIP [1], many different parameters to consider

separation
branching
heuristics
separation procedure: nested cuts, creep flow, cyclic generation...

MCF-IP is implemented using GMPL + CPLEX

Objective
Solve instances within reasonable time: 1 hour runtime limit
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Computational Evaluation Results

VirtuCast + LP-based Heuristics

Fat Tree IGen Torus
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Computational Evaluation Results

MCF-IP: Performance

Fat Tree IGen Torus
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LP-based Heuristics



Computational Evaluation Results

LP-based Heuristics: Efficacy

Fat Tree IGen Torus
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Computational Evaluation Results

LP-based Heuristics: Performance on graph size V

Fat Tree IGen Torus
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Conclusion Summary

Publications
Matthias Rost, Stefan Schmid: OPODIS 2013 & arXiv [15, 14]
Matthias Rost (Adv. Stefan Schmid): M.Sc. Thesis [13]

Concise definition of CVSAP

Inapproximability

Approximations
• NVSTP
• VSTP
• VSAP

Exact Algorithms
• multi-commodity flow
• single-commodity flow
→ VirtuCast

Heuristics
• FlowDecoRound
• MultipleShots
• GreedyDiving

Extensive explorative Computational Evaluation
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Conclusion Related Work

Related Work

Molnar: Constrained Spanning Tree Problems [9]

Shows that optimal solution is a ‘spanning hierarchy’ and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [11]

Consider a weaker variant of multicasting CVSAP without bandwidth
Use a (faulty) MIP to define the problem
Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [16]

Provided heuristic and showed improvement in scalability.
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Conclusion Future Work

Future Work

Model Extensions
prize-collecting variants
concurrent multicast / aggregation sessions
‘extend’ MIP formulation for weaker variants

Speeding-up Separation / Public Service Announcement

Koch et al. [7] stated that using Hao-Orlin the computation could be
sped up.
Cronholm et al. show that this is not really the case, but derive an
adaptation [4]:
For single node, all separations can be computed in O(nm log(n2/m))
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Conclusion Future Work

Thanks
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Conclusion Future Work
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Approximation of NVSTP via DNSTP

NVSTP
undirected version
no edge capacities
Steiner nodes have
capacities
connect terminals using
Steiner nodes to root
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Approximation of NVSTP via DNSTP: [12]

Definition (Degree-Constrained Node Weighted Steiner Tree Problem [12])

Given: Undirected network G = (VG ,EG , cE , cV , uV ) with edge costs
cE : EG → R≥0a, node costs cV : VG → R≥0, and a degree
bound function uV : VG → N≥2 and set of terminals
T ⊂ VG .

Task: Find a Steiner tree T ⊆ EG connecting all terminals T , such
that for each node v that is contained in T the degree bound
is not violated, i.e. that δT (v) ≤ uV (v) holds, minimizing the
cost CDNSTP(T ) =

∑
e∈T

cE (e) +
∑
v∈T

cV (v) .

aThe original definition and the corresponding theorem only considers the
node weighted case.
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Approximation of NVSTP via DNSTP

Theorem (Logarithmic bi-criteria approximation for DNSTP [12])

There exists a polynomial-time algorithm that returns a solution where
node capacities are (individually) violated at most by a factor O(log |T |)
and of cost within a factor of O(log |T |) the optimum solution.

Differences of NVSTP w.r.t. DNSTP
NVSTP constructs a tree, i.e. terminals have degree 1.
NVSTP may use arbitrary paths to connect nodes.
Not all nodes may be used as Steiner nodes.
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NVSTP via DNSTP:
Construction

bipartite mesh
connecting any terminal
to any Steiner node
clique between all Steiner
nodes and the root
all edges have cost of
respective shortest path

Checklist
NVSTP constructs a tree, i.e. terminals have degree 1.
NVSTP may use arbitrary paths to connect nodes.
Not all nodes may be used as Steiner nodes.
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NVSTP via DNSTP:
Construction

bipartite mesh
connecting any terminal
to any Steiner node
clique between all Steiner
nodes and the root
all edges have cost of
respective shortest path

Checklist
NVSTP constructs a tree, i.e. terminals have degree 1.
NVSTP may use arbitrary paths to connect nodes.
Not all nodes may be used as Steiner nodes.
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Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
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Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
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Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
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Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 78



Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals
5 perform ‘leafify’ operation on terminals

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 78



Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals
5 perform ‘leafify’ operation on terminals

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 78



Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals
5 perform ‘leafify’ operation on terminals

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 78



Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals
5 perform ‘leafify’ operation on terminals

Matthias Rost (TU Berlin) MIP for Aggregation and Multicast Trees ISMP 2015 78



Outline of Bicriteria Approximation for NVSTP

Algorithm
1 construct graph as described above
2 use Approximation by Ravi et al. to

obtain DNSTP solution
3 consider bipartite subgraph of terminals

with degree > 1
4 compute maximum matching with size

= number of terminals
5 perform ‘leafify’ operation on terminals

Theorem
1 Cost of introduced edges is bounded by triangle equation
2 Degree of non-terminals in matching is increased by 1
3 O(log |T |, log |T |) for DNSTP ⇒ O(log |T |, log |T |) for NVSTP
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