A Compact MIP for Aggregation and Multicast Trees under Flexible Routing and Function Placement

Matthias Rost, Technische Universität Berlin joint work with Stefan Schmid, T-Labs & TU Berlin

July 17th, 2015 ISMP 2015, Pittsburgh

Communication Schemes: Multicast (same old! same old?)

Communication Schemes: Multicast (same old! same old?)

Communication Schemes: Aggregation

Communication Schemes: Aggregation

Problem Statement

Setting: Network Virtualization

- (Unsplittable) routes can be established arbitrarily (e.g. using Software-Defined Networks)
- Processing functionality can be placed on specific nodes (e.g. using Network Functions Virtualization)

Main Questions

- How to compute *virtual* aggregation / multicasting trees?
 - Where to place in-network processing functionality?
 - How to trade-off between traffic and processing?

Introductory Example

Without in-network processing: Unicast

Solution Method

minimal cost flow

Solution uses

- 41 edges
- 0 processing nodes

Figure: Unicast solution

With in-network processing at all nodes

Solution Method

Steiner arborescence

Solution uses

- 16 edges
- 9 processing nodes

Figure: Aggregation tree

How to Trade-off?

What we aim for

Solution uses

- 26 edges
- 2 processing nodes

processing node

Solution Structure

Figure: Virtual Arborescence

Figure: underlying routes

Input

Definition (Network $G = (V_G, E_G, c_E, u_E)$)

- ullet integral capacities on the edges $u_E: E_G
 ightarrow \mathbb{N}$
- positive edge costs $c_E: E_G \to \mathbb{R}^+$

Definition (Abstract Communication Request)

An abstract communication request on a graph G is defined as a 5-tuple $R_G = (r, S, T, u_r, c_S, u_S)$, where

- $T \subseteq V_G$ is the set of terminals,
- ullet $r\in V_G\setminus \mathcal{T}$ denotes the root with integral capacity $u_r\in \mathbb{N}$ and
- $S \subseteq V_G \setminus (\{r\} \cup T)$ denotes the set of possible *Steiner sites* with associated activation costs $c_S : S \to \mathbb{R}^+$ and integral capacities $u_S : S \to \mathbb{N}$.

Virtual Arborescence

Definition (Virtual Arborescence on $G: \mathcal{T}_G = (V_T, E_T, r, \pi)$)

- $\{r\} \subseteq V_{\mathcal{T}} \subseteq V_{\mathcal{G}} \text{ and } E_{\mathcal{T}} \subseteq V_{\mathcal{T}} \times V_{\mathcal{T}}$
- $\pi: E_{\mathcal{T}} \to \mathcal{P}_{\mathcal{G}}$ maps each edge of $E_{\mathcal{T}}$ on a (simple) path $P \in \mathcal{P}_{\mathcal{G}}$, s.t.
 - (VA-1) (V_T, E_T, r) is an rooted arborescence with edges either directed towards or away from r,
 - (VA-2) for all $(u, v) \in E_{\mathcal{T}}$ the directed path $\pi(u, v)$ connects u to v in G.

Definition (Constrained Virtual Steiner Arborescence Problem)

Input: network $G = (V_G, E_G, c_E, u_E)$, request $R_G = (r, S, T, u_r, c_S, u_S)$. Task: Find a minimal cost Virtual Arborescence $\mathcal{T}_G = (V_T, E_T, r, \pi)$ satisfying:

(CVSAP-1)
$$\{r\} \cup T \subseteq V_{\mathcal{T}} \text{ and } V_{\mathcal{T}} \subseteq \{r\} \cup S \cup T$$
,

(CVSAP-2) for all
$$t \in T$$
 holds $\delta_{E_T}^+(t) + \delta_{E_T}^-(t) = 1$,

(CVSAP-3) for the root
$$\delta_{E_{\mathcal{T}}}^+(r) + \delta_{E_{\mathcal{T}}}^-(r) \leq u_r$$
 holds,

(CVSAP-4) for all
$$s \in S \cap V_{\mathcal{T}}$$
 holds $\delta^-_{\mathcal{E}_{\mathcal{T}}}(s) + \delta^+_{\mathcal{E}_{\mathcal{T}}}(s) \leq u_S(s) + 1$ and

(CVSAP-5) for all
$$e \in E_G$$
 holds $|(\pi(E_T))[e]| \le u_E(e)$.

The cost of a Virtual Arborescence is defined to be

$$C_{\mathsf{CVSAP}}(\mathcal{T}_G) = \sum_{e \in E_G} c_E(e) \cdot |\left(\pi(E_{\mathcal{T}})\right)[e]| + \sum_{s \in S \cap V_{\mathcal{T}}} c_S(s) \;,$$

where $|(\pi(E_T))[e]|$ denotes the number of times an edge is used.

Applications

Applications

	Network	Application	Technology, e.g.
multicast	ISP	service replication / cache placement [10, 11]	middleboxes / NFV + SDN
	backbone	optical multicast [6]	ROADM + SDH
	all	application-level multicast [16]	different
aggregation	sensor network	value & message aggregation [5, 8]	source routing
	ISP	network analytics: Gigascope [3]	middleboxes / NFV + SDN
	data center	big data / map-reduce: Cam-doop [2]	SDN

edge capacities

processing node locations

processing node capacities

What if backend links are congested?

What if only '3' users can be handled?

Solution Approaches

Comprehensive algorithmic study

Computational Complexity (Inapproximability)

Approximation Algorithms

Exact Algorithms (MIPs)

LP-based Heuristics

- M.Sc. Thesis [13] Matthias Rost (Advisors: Schmid, Bley, Feldmann)
 Optimal Virtualized In-Network Processing with Applications to Aggregation and Multicast, TU Berlin '14
- Conference [15] Matthias Rost and Stefan Schmid
 VirtuCast, Multicast and Aggregation with In-Network Processing,
 OPODIS '13
- Tech. Report [14] Matthias Rost and Stefan Schmid

 The Constrained Virtual Steiner Arborescence Problem: Formal Definition, Single-Commodity Integer Programming Formulation and Computational Evaluation, arXiv '13

Inapproximability

Theorem

Finding a feasible solution is already NP-complete.

Approximation Algorithms for Variants

Variants

Approximation via related problems

Exact Algorithms for CVSAP

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence
- necessitates independent construction of paths for all processing nodes

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence
- necessitates independent construction of paths for all processing nodes

Intuition: does not scale well

number of binary variables: #Steiner sites · #edges

Integer Program 1: A-CVSAP-MCF

$$C_{\mathsf{MCF}} = \sum_{e \in E_G} \mathbf{c}_e (f_e + \sum_{s \in S} f_{s,e})$$
 (MCF-OBJ)
 $+ \sum_{s \in S} \mathbf{c}_s \cdot \mathbf{x}_s$

subject to
$$f^{T}(\delta_{E_{MCF}}^{+}(v)) = f^{T}(\delta_{E_{MCF}}^{-}(v)) + |\{v\} \cap T| \quad \forall v \in V_{G}$$
 (MCF-1)
 $f^{s}(\delta_{E_{MCF}}^{+}(v)) = f^{s}(\delta_{E_{MCF}}^{-}(v)) + \delta_{s,v} \cdot x_{s} \quad \forall s \in S, v \in V_{G}$ (MCF-2)

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_r & , \\ \mathbf{u}_e & , \end{cases}$$

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_s x_s, \ e = (s, o^-), s \in S \\ \mathbf{u}_r, \quad e = (r, o^-) \end{cases} \qquad \forall e \in E_{MCF}$$

$$-|S|(1-f_{\overline{s},o^-}^s) \leq p_s - p_{\overline{s}} - 1$$

$$\forall \ s, \overline{s} \in S$$

 $\forall s \in S$

 $\forall e \in E_{MCE}$

$$f_{\overline{s},o^{-}}^{s} \leq x_{\overline{s}}$$
 $f_{(\overline{s},o^{-})}^{s} \leq x_{\overline{s}}$

$$\forall s, s \in S$$

$$\forall s \in S, \overline{s} \in S - s$$

$$f_{s,o^-}^s = 0$$

$$f_{\bar{s},o^-}^s + f_{s,o^-}^{\bar{s}} \le 1$$

$$\forall s \in S$$

 $\forall s, \overline{s} \in S$

$$x_s \in \{0,1\}$$

$$f_{\epsilon}$$

$$f_e^T \in \mathbb{Z}_{\geq 0}$$
 $f_e^s \in \{0, 1\}$
 $p \in [0, |S| - 1]$

$$\forall \ s \in S, e \in E_{\mathsf{MCF}}$$
 $\forall \ s \in S$

(MCF-3)

(MCF-6*)

(MCF-9)

(MCF-10)

Integer Program 2: A-CVSAP-MCF

minimize

$$C_{MCF} = \sum_{e \in E_G} \mathbf{c}_e (f_e + \sum_{s \in S} f_{s,e})$$

$$+ \sum_{s \in S} \mathbf{c}_s \cdot x_s$$
(MCF-OBJ)

subject to
$$f^T(\delta_{\mathsf{EMCF}}^+(v)) = f^T(\delta_{\mathsf{EMCF}}^-(v)) + |\{v\} \cap T| \quad \forall \ v \in V_G$$

$$f^s(\delta_{\mathsf{E}_{\mathsf{MCF}}}^+(v)) = f^s(\delta_{\mathsf{E}_{\mathsf{MCF}}}^-(v)) + \delta_{s,v} \cdot x_s \quad \forall \ s \in S, v \in V_G$$

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_s x_s, \ e = (s, o^-), s \in S \\ \mathbf{u}_r, \quad e = (r, o^-) \end{cases} \qquad \forall e \in E_{MCF}$$

$$\mathbf{u}_e, \quad e \in E_G$$

$$-|S|(1-f_{\bar{s},o^{-}}^{s}) \le p_{s} - p_{\bar{s}} - 1$$

$$f_{\bar{s},o^{-}}^{s} < y_{\bar{s}}^{-}$$

$$\forall \ s, \overline{s} \in S$$

$$, \bar{s} \in S$$
 (MCF-4)
 $\exists S - s$ (MCF-5*)

$$f_{(\bar{s},o^-)}^s \le x_{\bar{s}}$$

$$f_{s,o^-}^s = 0$$

$$\forall s \in S, \overline{s} \in S - s$$

$$\forall s \in S$$

$$f_{\bar{s},o^{-}}^{s} + f_{\bar{s},o^{-}}^{\bar{s}} \le 1$$
 $x_{s} \in \{0,1\}$

$$\forall s, \overline{s} \in S$$
 $\forall s \in S$

 $\forall e \in E_{MCE}$

 $\forall s \in S$

 $\forall s \in S, e \in E_{MGF}$

$$f_e^T \in \mathbb{Z}_{\geq 0}$$
$$f_e^s \in \{0, 1\}$$

$$f_e^s \in \{0, 1\}$$

 $p \in [0, |S| - 1]$

(MCF-1)

(MCF-2)

(MCF-3)

(MCF-6*)

(MCF-7*)

(MCF-10)

Integer Program 3: A-CVSAP-MCF

$$C_{MCF} = \sum_{e \in E_G} c_e (f_e + \sum_{s \in S} f_{s,e})$$

$$+ \sum_{s \in S} c_s \cdot x_s$$
(MCF-OBJ)

subject to
$$f^T(\delta_{E_{MCF}}^+(v)) = f^T(\delta_{E_{MCF}}^-(v)) + |\{v\} \cap T| \quad \forall \ v \in V_G$$
 (MCF-1)
 $f^s(\delta_{E_{MCF}}^+(v)) = f^s(\delta_{E_{MCF}}^-(v)) + \delta_{s,v} \cdot x_s \quad \forall \ s \in S, v \in V_G$ (MCF-2)

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_s x_s, \ e = (s, \mathbf{o}^-), s \in S \\ \mathbf{u}_r, \ e = (r, \mathbf{o}^-) \\ \mathbf{u}_e, \ e \in E_G \end{cases}$$

$$(MCF-3)$$

$$-|S|(1 - f_{\overline{s}, \mathbf{o}^-}^s) \le p_s - p_{\overline{s}} - 1$$

$$\forall s, \overline{s} \in S$$

$$\begin{aligned} & (\mathsf{d}_{\mathsf{e}}^{\mathsf{r}}, \, \mathsf{e} \in \mathsf{d}_{\mathsf{S}}^{\mathsf{r}}) \leq \mathsf{p}_{\mathsf{s}} - \mathsf{p}_{\mathsf{s}}^{\mathsf{r}} - 1 & \forall \, \mathsf{s}, \, \mathsf{\bar{s}} \in \mathsf{S} & (\mathsf{MCF-4}) \\ & f_{(\bar{\mathsf{s}}, \mathsf{o}^{-})}^{\mathsf{s}} \leq \mathsf{x}_{\bar{\mathsf{s}}} & \forall \, \mathsf{s} \in \mathsf{S}, \, \bar{\mathsf{s}} \in \mathsf{S} - \mathsf{s} & (\mathsf{MCF-5}^{\mathsf{s}}) \\ & f_{\mathsf{s}, \mathsf{o}^{-}}^{\mathsf{s}} = 0 & \forall \, \mathsf{s} \in \mathsf{S} & (\mathsf{MCF-6}^{\mathsf{s}}) \end{aligned}$$

$$f_{\overline{s},o^-}^s + f_{\overline{s},o^-}^{\overline{s}} \le 1$$
 $\forall s, \overline{s} \in S$ (MCF-7*)

$$x_s \in \{0,1\}$$
 $\forall s \in S$ (MCF-8)
 $f_e^T \in \mathbb{Z}_{\geq 0}$ $\forall e \in E_{MCF}$ (MCF-9)
 $f_s^S \in \{0,1\}$ $\forall s \in S, e \in E_{MCF}$ (MCF-10)

$$f_e^s \in \{0,1\} \qquad \forall s \in S, e \in E_{MCF} \qquad (MCF-10)$$

$$p \in [0,|S|-1] \qquad \forall s \in S \qquad (MCF-11)$$

Integer Program 4: A-CVSAP-MCF

minimize

$$C_{MCF} = \sum_{e \in E_G} \mathbf{c}_e (f_e + \sum_{s \in S} f_{s,e})$$

$$+ \sum_{s \in S} \mathbf{c}_s \cdot x_s$$
(MCF-OBJ)

subject to
$$f^{T}(\delta_{E_{MCF}}^{+}(v)) = f^{T}(\delta_{E_{MCF}}^{-}(v)) + |\{v\} \cap T| \quad \forall v \in V_{G}$$
 (MCF-1)
 $f^{s}(\delta_{E_{MCF}}^{+}(v)) = f^{s}(\delta_{E_{MCF}}^{-}(v)) + \delta_{s,v} \cdot x_{s} \quad \forall s \in S, v \in V_{G}$ (MCF-2)

$$f_{e}^{T} + \sum_{s \in S} f_{e}^{s} \leq \begin{cases} \mathbf{u}_{s} x_{s}, \ e = (s, o^{-}), s \in S \\ \mathbf{u}_{r}, \ e = (r, o^{-}) \\ \mathbf{u}_{e}, \ e \in E_{G} \end{cases}$$
 (MCF-3)

$$f_{e} = \sum_{s \in S} f_{e} = \begin{cases} f_{e} \\ f_{s} \\$$

$$f_{s,o^-}^s = 0$$
 $\forall s \in S$ (MCF-6*)
 $f_{\overline{s},o^-}^s + f_{s,o^-}^{\overline{s}} \leq 1$ $\forall s, \overline{s} \in S$ (MCF-7*)
 $x_s \in \{0,1\}$ $\forall s \in S$ (MCF-8)

$$x_s \in \{0,1\}$$
 $\forall s \in S$ (MCF-8)
 $f_e^T \in \mathbb{Z}_{\geq 0}$ $\forall e \in E_{MCF}$ (MCF-9)
 $f_s^s \in \{0,1\}$ $\forall s \in S, e \in E_{MCF}$ (MCF-10)

 $\forall s \in S$

 $p \in [0, |S| - 1]$

(MCF-11)

29

Single-Commodity Flow IP

Single-commodity flow formulation

- computes aggregated flow on edges independently of the origin
- does not represent virtual arborescence

Figure: Single-commodity

Multi- vs Single-Commodity

Example: 6000 edges and 200 Steiner sites

- Single-commodity: 6000 integer variables
- Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity

Figure: Multi-commodity

VirtuCast Algorithm

VirtuCast Algorithm

Outline of VirtuCast

- Solve single-commodity flow IP formulation.
- 2 Decompose IP solution into Virtual Arborescence.

How to decompose?

IP Formulation

Extended Graph

Additional nodes

- source o⁺
- sinks o_r^- and o_s^-

sender

Steiner

receiver

IP Formulation I

$$\begin{array}{lll} \text{minimize} & C_{\text{IP}}(x,f) = \sum_{e \in E_G} \mathbf{c}_e f_e + \sum_{s \in S} \mathbf{c}_s x_s \\ \\ \text{subject to} & f(\delta_{E_{\text{ext}}}^+(v)) = f(\delta_{E_{\text{ext}}}^-(v)) & \forall \ v \in V_G \\ & f(\delta_{E_{\text{ext}}}^+(W)) \geq x_s & \forall \ W \subseteq V_G, s \in W \cap S \neq \emptyset \\ \\ & f_e = 1 & \forall \ e = (\mathbf{o}^+, t) \in E_{\text{ext}}^{T^+} \\ & f_e = x_s & \forall \ e = (\mathbf{o}^+, s) \in E_{\text{ext}}^{S^+} \\ & x_s \in \{0, 1\} & \forall \ s \in S \\ & f_e \in \mathbb{Z}_{\geq 0} & \forall \ e \in E_{\text{ext}} \\ \end{array}$$

Connectivity Inequalities

STP Excursion [7]

Connectivity Inequalities

STP Excursion [7]

$$\begin{array}{ll}
 & \text{min } c^T x \\
 & (i) \quad x(\delta(W)) \geq 1, \quad \text{for all } W \subset V, W \cap T \neq \emptyset, \\
 & (uSP) & (V \setminus W) \cap T \neq \emptyset, \\
 & (ii) \quad 0 \leq x_e \leq 1, \quad \text{for all } e \in E, \\
 & (iii) \quad x \text{ integer},
\end{array}$$

$$\forall W \subseteq V_G, s \in W \cap S \neq \emptyset. \ f(\delta^+_{E^*_{\text{ext}}}(W)) \geq x_s$$

'From each activated Steiner site, there exists a path towards o_r^- .'

Exponentially many constraints, but ...

... can be separated in polynomial time.

Complete Formulation

$$\begin{array}{lll} \text{minimize} & C_{\text{IP}}(x,f) = \sum_{e \in E_G} \mathbf{c}_e f_e + \sum_{s \in S} \mathbf{c}_s x_s \\ \\ \text{subject to} & f(\delta_{E_{\text{ext}}}^+(v)) = f(\delta_{E_{\text{ext}}}^-(v)) & \forall \ v \in V_G \\ \\ & f(\delta_{E_{\text{ext}}}^+(W)) \geq x_s & \forall \ W \subseteq V_G, s \in W \cap S \neq \emptyset \\ \\ & f_e \leq \mathbf{u}_s x_s & \forall \ e = (s, \mathbf{o}_S^-) \in E_{\text{ext}}^{S^-} \\ \\ & f_{(r, \mathbf{o}_r^-)} \leq \mathbf{u}_r \\ \\ & f_e \leq \mathbf{u}_e & \forall \ e \in E_G \\ \\ & f_e = 1 & \forall \ e \in E_{\text{ext}} \\ \\ & f_e = x_s & \forall \ e = (\mathbf{o}^+, s) \in E_{\text{ext}}^{S^+} \\ \\ & x_s \in \{0, 1\} & \forall \ s \in S \\ \\ & f_e \in \mathbb{Z}_{\geq 0} & \forall \ e \in E_{\text{ext}} \\ \end{array}$$

Decomposing flow is non-trivial!

Flow solution ...

- contains cycles and
- represents arbitrary hierarchies.

However, ...

- decomposition is always feasible
- constructive proof:
 polynomial time algorithm

Outline of Decomposition Algorithm

Decomposition Approach

- select a terminal $t \in T$
- 2 construct path P from t towards o_r^-
- 3 reduce flow along edges in P, s.t. connectivity inequalities are valid
- onnect t to the second last node of P and remove t

Outline of Decomposition Algorithm

Reduced problem must be feasible

Removing flow must not invalidate any connectivity inequalities.

Principle: Repair & Redirect

- decrease flow on path edge by edge
- if connectivity inequalities are violated

repair increment flow on edge to regain feasibility redirect choose a different path from current node

Theorem

Given an optimal solution, the Decompososition Algorithm computes a Virtual Arborescence in time $\mathcal{O}\left(|V_G|^2 \cdot |E_G| \cdot (|V_G| + |E_G|)\right)$.

Example

Example

Example

Redirecting Flow

Violation of Connectivity Inequality

$$f(\delta_{E_{\mathrm{ext}}^{R}}^{+}(W)) \ge x_{s} \qquad \forall \ W \subseteq V_{G}, s \in W \cap S \neq \emptyset$$

Redirecting Flow

Redirection towards o_S^- is possible!

There exists a path from v towards o_S^- in W.

Redirecting Flow

Redirection towards o_S^- is possible!

There exists a path from v towards o_s^- in W.

Reasoning

- lacktriangle Flow preservation holds within W.
- 2 s could reach o_r^- via v before the reduction of flow.
- v receives at least one unit of flow.
- 4 Flow leaving v must eventually terminate at o_s^- .

Final Solution $\langle s, v, r \rangle$ S(t3,5)

Overview

Linear Relaxations

- The linear relaxation of an IP is obtained by relaxing the integrality constraints of the variables, thereby obtaining a Linear Program (LP).
- Solutions to linear relaxations are readily available when using branch-and-bound to solve an IP.
- May provide useful information to guide the construction of a solution.

Usage

- LP-based heuristics are employed within the VirtuCast *solver* to improve the bounding process.
- Yield polynomial time heuristics when used together with the root relaxation.

FlowDecoRound Heuristic

- computes a flow decomposition and connects nodes randomly according to the decomposition
- processing nodes are activated if another node node connects to it, must be connected itself
- failsafe: shortest paths

```
Algorithm 1: FlowDecoRound
     Input : Network G = (V_G, E_G, c_E, u_E), Request
                   R_G = (r, S, T, u_r, c_S, u_S),
                   LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{PP} to ??
     Output: A Feasible Virtual Arborescence Tc or null
 1 set \hat{S} \triangleq \emptyset and \hat{T} \triangleq \emptyset and U = T
  2 set \hat{V}_{\tau} \triangleq \{r\}, \hat{E}_{\tau} \triangleq \emptyset and \hat{\pi} : \hat{E}_{\tau} \rightarrow P_{G}
                                                                                  for all e \in E_{ext}
 4 while U ≠ 0 do
           choose t \in U uniformly at random and set U \leftarrow U - t
           set \Gamma_t \triangleq \text{MinCostFlow} \left( G_{\text{ext}}, \hat{f}, \hat{f}(o^+, t), t, \{o_c^-, o_r^-\} \right)
           set \Gamma_r \leftarrow \Gamma_r \setminus \{(P, f) \in \Gamma_r | \exists e \in P, u(e) = 0\}
           set \Gamma_t \leftarrow \Gamma_t \setminus \{(P, f) \in \Gamma_t | (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) \text{ is not acyclic } \}
                choose (P, f) \in \Gamma_t with probability f / (\sum_{(P_i, f_i) \in \Gamma_t} f_j)
                if P_{|P|-1} \notin \hat{V}_T then
                  set U \leftarrow U + P_{|P|-1} and \hat{V}_T \leftarrow \hat{V}_T + P_{|P|-1}
                set \hat{V}_T \leftarrow \hat{V}_T + t and \hat{E}_T \leftarrow \hat{E}_T + (t, P_{|P|-1})
                 and \hat{\pi}(t, P_{|D|-1}) \triangleq P
                set u(e) \leftarrow u(e) - 1 for all e \in P
16 set u(e) \leftarrow 0 for all e = (s, o_s^-) \in E_{\text{ext}}^{S^-} with s \in S \land s \notin \hat{V}_T
17 set \bar{T} \triangleq (T \setminus \hat{V}_T) \cup (\{s \in S \cap \hat{V}_T | \delta_F^+(s) = 0\})
18 for t \in \bar{T} do
          choose P \leftarrow \text{ShortestPath}\left(G_{\text{evt}}^u, c_E, t, \{o_c^-, o_r^-\}\right)
                   such that (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) is acyclic
           if P = \emptyset then
            return null
           set \hat{V}_T \leftarrow \hat{V}_T + t and \hat{E}_T \leftarrow \hat{E}_T + (t, P_{|P|-1}) and \hat{\pi}(t, P_{|P|-1}) \triangleq P
          set u(e) \leftarrow u(e) - 1 for all e \in P
24 for e \in \hat{E}_{\tau} do
          set P \triangleq \hat{\pi}(e)
          set \hat{\pi}(e) \leftarrow \langle P_1, \dots, P_{|P|-1} \rangle
27 set \hat{T}_G \triangleq \text{Virtual Arborescence}(\hat{V}_T, \hat{E}_T, r, \hat{\pi})
28 return PruneSteinerNodes (Tc)
```

Intermezzo: VCPrimConnect

Important Observation

If all placed processing nodes are already connected, all senders can be assigned *optimally* using a minimum cost flow.

Outline

- connect all opened processing nodes in tree via a adaption of Prim's MST algorithm
- assign all sending nodes using min-cost flow

```
Algorithm 2: VCPrimConnect
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                R_G = (r, S, T, u_r, c_S, u_S),
                 Partial Virtual Arborescence T_G^P = (V_T^P, E_T^P, r, \pi^P)
   Output: Feasible Virtual Arborescence T_G = (V_T, E_T, r, \pi) or null
 1 set U \triangleq \{v | v \in V_T^P \setminus \{r\}, \delta_{EP}^+(v) = 0\}
 2 set $\bar{S} \text{\text{\text{$}}} U \cap S
 3 set V_T \triangleq V_T^P, E_T \triangleq E_T^P and \pi(u, v) = \pi^P(u, v) for all (u, v) \in E_T
4 set u(e) \triangleq u_E(e) - |\pi(E_T)[e]| for all e \in E_G
 5 while \bar{S} \neq \emptyset do
         compute R \leftarrow \{r' | r \in \{r\} \cup (V_T \cap S), r' \text{ reaches } r \text{ in } T_G, \delta_{E_-}^-(r') < r \}
         compute P = MinAllShortestPath(G^u, c_E, \bar{S}, R)
         if P = null then
             return null
         set \bar{S} \leftarrow \bar{S} - P_1
         set E_T \leftarrow E_T + (P_1, P_{|P|}) and \pi(P_1, P_{|P|}) \triangleq P
        set u(e) \leftarrow u(e) - 1 for all e \in P
14 end
15 set T̄ ≜ U ∩ T
16 set u_V(r') \triangleq u_{r,S}(r') - \delta_{E_r}(r') for all r' \in \{r\} \cup (V_T \cap S)
17 compute \Gamma = \{P^{\overline{t}}\} \leftarrow \text{MinCostAssignment}(G, c_F, u, u_V, \overline{T}, \{r\} \cup V_T \cap S)
18 if Γ - 0 then
19 return null
20 end
21 set E_T \leftarrow E_T + (t, P_{|Pt|}^t) and \pi(t, P_{|Pt|}^t) \triangleq P^t for all P^t \in \Gamma
22 return T_G \triangleq (V_T, E_T, r, \pi)
```

MultipleShots

- treats node variables as probabilities and iteratively places processing functionality accordingly
- tries to generate a feasible solution in each round via VCPrimConnect

```
Algorithm 3: MultipleShots
     Input : Network G = (V_C, E_C, c_E, u_E). Request
                  R_G = (r, S, T, u_r, c_S, u_S),
                  LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{LP} to ??
     Output: A Feasible Virtual Arborescence \hat{T}_G or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \leq 0.01\} and |S| \triangleq \{s \in S | \hat{x}_s > 0.99\}
 2 addConstraintsLocallv(\{x_c = 0 | s \in |S|\} \cup \{x_c = 1 | s \in [S]\})
  3 set S_0 \triangleq |S| \cup \text{ and } S_1 \triangleq [S]
 4 disableGlobalPrimalBound()
          (\hat{x}, \hat{f}) \leftarrow solveSeparateSolve()
          if infeasibleLP() return null
          set |S| \triangleq \{s \in S | \hat{x}_s \leq 0.01\} and |S| \triangleq \{s \in S | \hat{x}_s > 0.99\}
          addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
          set \hat{S}_0 \leftarrow \hat{S}_0 \cup |S| and \hat{S}_1 \leftarrow \hat{S}_1 \cup |S|
          set \hat{S} \triangleq S \setminus (\hat{S}_0 \cup \hat{S}_1)
          if \hat{S} \neq \emptyset then
13
                reneat
14
                      remove s from S_1 with probability 1 - k_s for all s \in S_1
                     if S_1 = \emptyset and |S \setminus (\dot{S}_0 \cup \dot{S}_1)| < 10 then
16
17
                           set S_1 \leftarrow S \setminus (\dot{S}_0 \cup \dot{S}_1)
                addConstraintsLocally(\{x_s = 1 | s \in S_1\})
               set \dot{S}_1 \leftarrow \dot{S}_1 \cup S_1
           \hat{T}_{c}^{P} \triangleq (\hat{V}_{\tau}^{P}, \hat{E}_{\tau}^{P}, r, \emptyset) \text{ where } \hat{V}_{\tau}^{P} \triangleq \{r\} \cup T \cup \hat{S}_{1} \text{ and } \hat{E}_{\tau} \triangleq \emptyset
          set \hat{T}_C \triangleq VCPrimConnect(G, R_C, \hat{T}_C^P)
          if \hat{T}_C \neq null then
            return PruneSteinerNodes (\hat{T}_G)
25 until \dot{S}_0 \cup \dot{S}_1 = S
26 return null
```

GreedyDiving

- aims at generating a feasible IP solution
- iteratively bounds at least a single variable from below, first fixing node variables
- complex failsafe:
 PartialDecompose + VCPrimConnect

```
Algorithm 4: GreedyDiving
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_C = (r, S, T, u_r, c_S, u_S),
                 LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{P} to ??
    Output: A Feasible Virtual Arborescence Tc or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \leq 0.01\} and |S| \triangleq \{s \in S | \hat{x}_s \geq 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
 3 set \dot{S} \triangleq |S| \cup |S| and \dot{E} \triangleq \emptyset
 4 do
         (\hat{x}', \hat{f}') \leftarrow \text{solveSeparateSolve}()
         if infeasibleLP() and \dot{S} = S then
         else if infeasibleLP() or objectiveLimit() then
               return null
          set (\hat{x}, \hat{f}) \leftarrow (\hat{x}', \hat{f}')
         if \dot{S} \neq S then
               set |S| \triangleq \{s \in S | \hat{x}_s \leq 0.01\} and |S| \triangleq \{s \in S | \hat{x}_s \geq 0.99\}
12
13
               addConstraintsLocallv(\{x_i = 0 | s \in |S|\} \cup \{x_i = 1 | s \in |S|\})
               set \dot{S} \leftarrow \dot{S} \cup |S| \cup [S]
15
               set Ŝ≜S\Ś
               if \hat{S} \neq \emptyset then
                    choose \hat{s} \in \hat{S} with c_S(\hat{s})/\hat{x}_{\hat{s}} minimal
17
18
                     addConstraintsLocally({x_i = 1})
19
                    set \dot{S} \leftarrow \dot{S} + \hat{s}
          else if \dot{F} \neq F_{max} then
               set |E| \triangleq \{e \in E_{ext} | |\hat{f}_e - |\hat{f}_e| | \le 0.001\}.
               [E] \triangleq \{e \in E_{avt} | |\hat{f}_e - [\hat{f}_e]| \le 0.001\}
               addConstraintsLocally(\{f_e = |\hat{f}_e||e \in |E|\} \cup \{f_e = [\hat{f}_e]|e \in
               [E]}
               set \dot{E} \leftarrow \dot{E} \cup |E| \cup |E|
24
               set Ê ≜ E... \ È
               if \hat{F} \neq \emptyset then
                    choose \hat{e} \in \hat{E} with \lceil \hat{f}_{a} \rceil - \hat{f}_{b} minimal
26
                     addConstraintsLocallv(\{\hat{f}_b > \lceil \hat{f}_b \rceil \})
27
                    set \dot{E} \leftarrow \dot{E} + \hat{e}
               break
31 set \hat{f}_e \leftarrow |\hat{f}_e| for all e \in E_{evt} \setminus \hat{E}
32 set \hat{T}_{G}^{P} \leftarrow PartialDecompose (G, R_{G}, (\hat{x}, \hat{f}))
33 return VCPrimConnect (G. Rc. Tr.)
```

Computational Evaluation

Topologies

An ISP topology generated by IGen with 2400 nodes.

Instances

Generation Parameters

- five graph sizes I-V
- 15 instances per graph size: different Steiner costs, different edge capacities

	Nodes	Edges	Processing Locations	Senders
Fat tree	1584	14680	720	864
3D torus	1728	10368	432	864
IGen	4000	16924	401	800

Table: Largest graph sizes

Computational Setup

Implementation

- all algorithms (except MCF-IP) are implemented in C/C++
- VirtuCast uses SCIP [1], many different parameters to consider
 - separation
 - branching
 - heuristics
 - separation procedure: nested cuts, creep flow, cyclic generation...
- MCF-IP is implemented using GMPL + CPLEX

Objective

Solve instances within reasonable time: 1 hour runtime limit

VirtuCast + LP-based Heuristics

VirtuCast + LP-based Heuristics

MCF-IP

MCF-IP: Performance

LP-based Heuristics

LP-based Heuristics: Efficacy

LP-based Heuristics: Performance on graph size V

Publications

Matthias Rost, Stefan Schmid: OPODIS 2013 & arXiv [15, 14] Matthias Rost (Adv. Stefan Schmid): M.Sc. Thesis [13]

Concise definition of CVSAP

Inapproximability

Approximations

- NVSTP
- VSTP
- VSAP

Exact Algorithms

- multi-commodity flow
- single-commodity flow
 - → VirtuCast

Heuristics

- FlowDecoRound
- MultipleShots
- GreedyDiving

Extensive explorative Computational Evaluation

Related Work

Molnar: Constrained Spanning Tree Problems [9]

Shows that optimal solution is a 'spanning hierarchy' and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [11]

- Consider a weaker variant of multicasting CVSAP without bandwidth
- Use a (faulty) MIP to define the problem
- Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [16]

Provided heuristic and showed improvement in scalability.

Future Work

Model Extensions

- prize-collecting variants
- concurrent multicast / aggregation sessions
- 'extend' MIP formulation for weaker variants

Speeding-up Separation / Public Service Announcement

- Koch et al. [7] stated that using Hao-Orlin the computation could be sped up.
- Cronholm et al. show that this is not really the case, but derive an adaptation [4]:
 - For single node, all separations can be computed in $\mathcal{O}(nm\log(n^2/m))$

Thanks

References I

- [1] T. Achterberg.
 - SCIP: solving constraint integer programs.
 - Mathematical Programming Computation, 1(1):1–41, 2009.
- [2] P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea. Camdoop: Exploiting In-network Aggregation for Big Data Applications.

In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2012

- [3] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A Stream Database for Network Applications. In Proc. ACM SIGMOD International Conference on Management of Data, pages 647–651, 2003.
- [4] W. Cronholm, F. Ajili, and S. Panagiotidi. On the minimal steiner tree subproblem and its application in branch-and-price. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 125–139. Springer, 2005.
- [5] M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in sensor networks. In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4, pages 2168–2172. IEEE, 2003.

References II

- [6] C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm. Ethernet aggregation and core network models for effcient and reliable iptv services. Bell Labs Technical Journal, 12(1):57–76, 2007.
- [7] T. Koch and A. Martin.Solving steiner tree problems in graphs to optimality. Networks, 32(3):207–232, 1998.
- [8] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in wireless sensor networks. In *IEEE infocom*, volume 2, pages 39–44, 2002.
- M. Molnár.
 Hierarchies to Solve Constrained Connected Spanning Problems.
 Technical Report Irimm-00619806, University Montpellier 2, LIRMM, 2011.
- [10] S. Narayana, W. Jiang, J. Rexford, and M. Chiang. Joint Server Selection and Routing for Geo-Replicated Services. In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.

References III

[11] C. Oliveira and P. Pardalos.

Streaming cache placement.

In Mathematical Aspects of Network Routing Optimization, Springer Optimization and Its Applications, pages 117–133. Springer New York, 2011.

- [12] R. Ravi, M. V. Marathe, S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Approximation algorithms for degree-constrained minimum-cost network-design problems. *Algorithmica*, 31(1):58–78, 2001.
- [13] M. Rost. Optimal Virtualized In-Network Processing with Applications to Aggregation and Multicast, 2014
- [14] M. Rost and S. Schmid.

The Constrained Virtual Steiner Arborescence Problem: Formal Definition, Single-Commodity Integer Programming Formulation and Computational Evaluation. Technical report, arXiv, 2013.

[15] M. Rost and S. Schmid.

Virtucast: Multicast and aggregation with in-network processing.

In R. Baldoni, N. Nisse, and M. Steen, editors, *Principles of Distributed Systems*, volume 8304 of *Lecture Notes in Computer Science*, pages 221–235. Springer International Publishing, 2013.

Future Work

References IV

[16] S. Shi.

A proposal for a scalable internet multicast architecture.

In Washington University, 2001.

Approximation of NVSTP via DNSTP

Approximation of NVSTP via DNSTP

NVSTP

- undirected version
- no edge capacities
- Steiner nodes have capacities
- connect terminals using Steiner nodes to root

Approximation of NVSTP via DNSTP: [12]

Definition (Degree-Constrained Node Weighted Steiner Tree Problem [12])

Given: Undirected network $G=(V_G,E_G,c_E,c_V,u_V)$ with edge costs $c_E:E_G\to\mathbb{R}_{\geq 0}{}^a$, node costs $c_V:V_G\to\mathbb{R}_{\geq 0}$, and a degree bound function $u_V:V_G\to\mathbb{N}_{\geq 2}$ and set of terminals $T\subset V_G$.

Task: Find a Steiner tree $\mathcal{T}\subseteq E_G$ connecting all terminals \mathcal{T} , such that for each node v that is contained in \mathcal{T} the degree bound is not violated, i.e. that $\delta_{\mathcal{T}}(v) \leq u_V(v)$ holds, minimizing the cost $C_{\mathsf{DNSTP}}(\mathcal{T}) = \sum_{e \in \mathcal{T}} c_E(e) + \sum_{v \in \mathcal{T}} c_V(v)$.

^aThe original definition and the corresponding theorem only considers the node weighted case.

Approximation of NVSTP via DNSTP

Theorem (Logarithmic bi-criteria approximation for DNSTP [12])

There exists a polynomial-time algorithm that returns a solution where node capacities are (individually) violated at most by a factor $\mathcal{O}(\log |\mathcal{T}|)$ and of cost within a factor of $\mathcal{O}(\log |\mathcal{T}|)$ the optimum solution.

Differences of NVSTP w.r.t. DNSTP

- NVSTP constructs a tree, i.e. terminals have degree 1.
- NVSTP may use arbitrary paths to connect nodes.
- Not all nodes may be used as Steiner nodes.

NVSTP via DNSTP: Construction

- bipartite mesh connecting any terminal to any Steiner node
- clique between all Steiner nodes and the root
- all edges have cost of respective shortest path

Checklis

- NVSTP constructs a tree, i.e. terminals have degree 1.
- NVSTP may use arbitrary paths to connect nodes.
- Not all nodes may be used as Steiner nodes.

NVSTP via DNSTP:

- bipartite mesh connecting any terminal to any Steiner node
- clique between all Steiner nodes and the root
- all edges have cost of respective shortest path

Checklist

- NVSTP constructs a tree, i.e. terminals have degree 1.
- NVSTP may use arbitrary paths to connect nodes.
- Not all nodes may be used as Steiner nodes.

Algorithm

construct graph as described above

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- \odot consider bipartite subgraph of terminals with degree > 1

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- consider bipartite subgraph of terminals with degree > 1
- compute maximum matching with size
 - = number of terminals

- 1 construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- \odot consider bipartite subgraph of terminals with degree > 1
- compute maximum matching with size
 number of terminals
- perform 'leafify' operation on terminals

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- \odot consider bipartite subgraph of terminals with degree > 1
- compute maximum matching with size
 number of terminals
- perform 'leafify' operation on terminals

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- ullet consider bipartite subgraph of terminals with degree > 1
- compute maximum matching with size
 number of terminals
- perform 'leafify' operation on terminals

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- ullet consider bipartite subgraph of terminals with degree > 1
- compute maximum matching with size
 number of terminals
- perform 'leafify' operation on terminals

Algorithm

- construct graph as described above
- use Approximation by Ravi et al. to obtain DNSTP solution
- $\begin{tabular}{ll} \hline {\bf 3} & consider bipartite subgraph of terminals \\ & with degree >1 \\ \hline \end{tabular}$
- compute maximum matching with size = number of terminals
- perform 'leafify' operation on terminals

Theorem

- Cost of introduced edges is bounded by triangle equation
- ② Degree of non-terminals in matching is increased by 1
- **3** $\mathcal{O}(\log |T|, \log |T|)$ for DNSTP $\Rightarrow \mathcal{O}(\log |T|, \log |T|)$ for NVSTP