Beyond the Classic Virtual Network Embedding: Temporality and Optimal In-Network Processing

Matthias Rost

Technische Universität Berlin

August 12th, 2014 Lehrstuhl für Kommunikationsnetze, TU München

Part I: How to schedule networking tasks

- How and when should data center synchronize their data?
- How and when should tasks be deployed within data centers?

Part II: How to deploy in-network processing services

- How can we deploy a multicasting service, e.g. IPTV?
- How can we perform in-network analytics efficiently, e.g. distributed IDS?

Part I: How to schedule networking tasks

- How and when should data center synchronize their data?
- How and when should tasks be deployed within data centers?

Part II: How to deploy in-network processing services

- How can we deploy a multicasting service, e.g. IPTV?
- How can we perform in-network analytics efficiently, e.g. distributed IDS?

Algorithmic approach: Mixed-Integer Programming (MIP)

- <u>outline</u> how to obtain good or strong formulations
- <u>outline</u> how to obtain polynomial time heuristics

Part I: How to schedule networking tasks

- How and when should data center synchronize their data?
- How and when should tasks be deployed within data centers?

Part II: How to deploy in-network processing services

- How can we deploy a multicasting service, e.g. IPTV?
- How can we perform in-network analytics efficiently, e.g. distributed IDS?

Algorithmic approach: Mixed-Integer Programming (MIP)

- <u>outline</u> how to obtain good or strong formulations
- <u>outline</u> how to obtain polynomial time heuristics

Please, if you have any questions, ask right away!

Mixed-Integer Programming Crash Course

5

In many cases: NP-hard!

Why bother with (Mixed-)Integer Programming?

In general:

- Easy to formulate all kinds of optimization problems
- Highly optimized solvers which can even solve large problems

Why we bother:

- Important as baseline for polynomial time heuristics
- Allows trading off runtime with solution quality

7

7

7

7

Branch-and-Bound Summary

Branching Divide the solution space by considering (disjoint) subspaces. Bounding Compute linear relaxations for subspaces, allowing to cut-off nodes in the search tree.

Dual bounds are computed on-the-fly, allowing to qualify solution quality.

Part I: Scheduling Network Tasks

The Virtual Network Embedding Problem (VNEP)

Physical Network

The Virtual Network Embedding Problem (VNEP)

Virtual Network Requests

The Virtual Network Embedding Problem (VNEP)

Virtual Network Requests

- map virtual onto substrate nodes

- map virtual links onto substrate paths
- obeying the substrate's capacities

Embedding

Facets of the VNEP

Setting

(De)centralized

Multi-Provider

Reliability

Reconfigurations

Objectives

Access Control

Load Balancing

Energy Savings

Algorithms

Exact

Heuristic

Related Work

TABLE III TAXONOMY OF CONCISE VINE APPROACHES

Category	R efe rence	Optimization .	Coordination	Contribution		
C/S/C	(26) Infulier and Raid1 (2011)	Exact	One Stage	Provides delay, location and routing constraints		
	[99] Liu et al. (2011)	Exact	One Stage	Exact VNE based on correspondence matrices		
	(40) Trinh et al. (2011)	Exat	One Stage	Exact VNE problem with SLA QoS guarantees		
	64 Pages et al. (2012)	Exact/Metabouristic	One Stage	Introduces the VNE for optical networks		
	HI Linchka and Karl (2009)	Heuristic	One Stage	Provides one stage VNE. Based on SED		
	62 Di et al. (2010)	Heuristic	One Stage	Improvement of the approach in 11		
	63 Ghazar and Saaman (2011)	Heuristic	One Stage	Introduces hierarchical management of the SN		
	64. 65 Yun et al. (2011-2012)	Heuristic	One Stage	First VNE approach in wireless multihop networks. Int duces metrics and feasibility measures for wireless VNE		
	55 Chen et al. (2012)	Heuristic	One Stage	Reduces resource fragmentation		
	66 Yu et al. (2012)	Heuristic	One Stage	One step VNE that increases coordination		
	67 Liu et al. (2011)	Heuristic	Two Stages	Improve a coordination based on nodes proximity		
	24. 23 Shoug et al. (2011-2012)	Heuristic	Two States	Opportunistic resource sharing to dra1 with load fluctuation		
	68 Li et al. (2012)	Heuristic	Two Stages	Topology awareness to enforce VNE coordination		
	(9) Lu and Tamer (2006)	Heuristic	Uncoordinated	Embedding in specific backbone-star VN topologies		
	32 Ye et al.* (2008)	Heuristic	Uncoordinated	Utilizes the KSP sizorithm [3] for VLiM		
	TO Razzag and Sirai (2000)	Heuristic	Uncoordinated	Different K values in KSP based VLiM		
	71 Razzas et al. (2011)	Heuristic	Uncoordinated	law stirates the VNE impact of bottlenecked nodes a		
	72 Normina et al. (2011)	Heuristic	Uncoordinated	VNE considering SN resources hererogeneity		
	23 Lengters et al * (2010)	Heuristic	Unconfigured	Introduces VNE for wireless actuals insteads		
	(22) (57) Botero et al. (2011-2013)	Heuristic	Uncoordinated	Introduces hidden hos constraints		
	34 Zhu and Ammun ^a (2006)	Heuristic	Unconfinited	Provides a balanced link and node stress in the SN		
	SI Failant et al. (2011)	Metabourigie	One Stee	Max.Min Ant Colony metabouristic VNE approach		
	[25] Cheng et al. (2012)	Metaheuristic	One Stage	Accelerates convergence of PSO VNE metahoaristic with topology aware node ranking 27		
	26 Zhang et al. (2012)	Heuristic	Uncoordinated	Mass one virtual node in several substate nodes		
	222 Di et al. (2012)	Houristic	One Stage	Coordinated VNE reducing the number of backtracks h carefully chosing the first virtual node to map		
	28 Abedifar and Eshghi (2012)	Heuristic	Unc-coeffinated	Introduces VNE in the optical domain trying to minimize th number of Ju per link		
	22 Aris Leinadaus et al. (2012)	Heuristic	Coostinuted	Considers importance of virtual nodes for embedding		
	30 Tae-Ho Lee et al. (2012)	Heuristic	InterInP	clustering of virtual networks in multi-provider environmen		
C MAC	Do Balland on al (2011)	Manufactor	Ow Down	Meaning of a site with heathers had address links		
care.	The Pagine is an (2011)	Handata	The Suge	Migration of nodes with bottlene and anjacent mass		
	The and America (2006)	Mandatio	Unconfigured	Robustle and of asiada scanduration		
	The and Ammer (2006)	Mandetie	Unconfinited	Reference the cost of VMPs, monthanation		
		Handada	Uncovernate	Record section for these for the comparation		
	 Shan-li and Xue-song (2011) 	Heuristic	Uncoordinated	Mentifes mapped virtual nodes and links with not opti- magning and migrate them to sare SN resources		
	85 Sun et al. (2012)	Heuristic	Uncoordinated	Introduces the VNE problem for evolving VNRs		
DASIC	50, 57 Houidi et al. (2010)	Heuristic	Uncoordinated	First distributed approach to solve VNE Proposes a VNI protocol to monarte the communication among substrate node		
	Xin et al (2011)	Heuristic	IntestoP	Introduces the InterlaP VNE for networked clouds		
	(20 Ly et al. (2011)	Houristic	Interfap	InterlaP VNF using historybical virtual resource or main atio		
	(42) Houidi et al.* (2011)	Exact/Metaheuristic	InterInP	VNR is splitassigning each subVN in different InPs. Provide exact and hearistic splitting approaches		
	(3012) Leivadeas et al.* (3012)	Heuristic	InterInP	Graph partitioning InterInP VNE using a heuristic integratin a min k-cut algorithm followed by subgraph isomorphism		
D/D/C	Maquezas et al. (2010)	Heuristic	Uncoordinated	First distributed dynamic approach. Reorganizes the SN whe		

TABLE IV TAXONOMY OF REDUNDANT VNE APPROACHES

Category	R efe rence	Optimization	Coordination	Contribution		
C.N/R	42 Houidi et al.* (2011)	Exet	One Stage	First approach providing an ILP exact solution		
	[92] Zhang et al. (2011)	Exact	One Stage	Optimal resilient solution attaining an enhanced QoS map- ping. Provides diversified substrate back-up paths		
	41 Hotero et al. (2012)	Exact	One Stage	Introduces the energy aware VNE		
	93 Wang and Wolf (2011)	Exact	One Stage	Redefines the VNR as a traffic matrix		
	(94), (95), (96) Shamsi and Brockmeyer (2007-2009)	Heuristic	One Stage	Recover link failures by providing backup paths with inter- mediate nodes		
	(92) Koslovski et al. (2010)	Heuristic	One Stage	Introduces reliability as a service offered by the InP. Reliable VNEs based on subgraph isomorphism detection		
	(98) Yu et al. (3010)	Heuristic	One Stage One Stage	Introduces failure-dependent protection with a hack-up sol- tion for each regional failure		
	99 Lv et al. (2012)			Introduces losses to multicast VNE in wireless mesh networks		
	36. 27 Chowdhury et al. (2009-2011)	Heuristic	Two Stages	Coordination in VNE using multi-path for VLiM		
	Rahman et al. (2010)	He uristic	Two Stages	Upon a failure, the economic penalty is minimized by the pre-reservation of a bandwidth quota for back-up in SN links		
	51 Butt et al.* (2010)	Heuristic	Two Stages	VNE awareness of the SN bottlenesked resources		
	29 Yeaw et al. (2030)	He wistic	Two Stages	Introduces sharing among back up resources. Reduces re- sources allocated for redundancy		
	250 San et al. (2011)	He wistic	Two Stages	Resilient VNE optimizing the embedding cost and reducing computational complexity		
	30 Yu et al. (3011)	He wistig	Two Stages	Resilient VNE analyzing failures in substrate nodes		
	74 et al.* (2005)	He uristic	Uncoordinate d	Introduces the multi-path approach for VLiM		
	[301] Clao et al. (2010)	Heuristic	Uncoordinate d	Improvement of the approach in [16]		
	102 Yang et al. (2000)	Heuristic	Uncoordinate d	Divides the SN in regions to reduce VNE complexity		
	103 Zho et al. (2010)	Heuristic	Uncoordinate d	Maps one virtual node to multiple substrate nodes		
	[204] Chen et al. (2010)	Heuristic	Uncoordinate d	Reactive resiliency protection approach against failures during the online VNE process. Considers just substrate link failures		
	1055 Yu et al. (2011)	Heuristic	Uncoordinate d	Proactive VNE approach offering protection against SN link failures for links with high stess		
	23 Sun et al. (2011)	He uristic He uristic He uristic	Uncoordinate d Uncoordinate d Uncoordinate d	Introduces stochastic BW demand to the VNE		
	55 Lu et al. (2011)			Introduces load halancing in links		
	28 Gao et al. (2011)			Proactive resilient VLiM approach sharing back-up path		
	17 Cheng et al. (2011)	Metahouristic	Two Stages	Introduces topology-awareness in VNE		
	[356] Sheng et al. (2011)	Metaheuristic	Two Stages	Embedding time depends on VNR lifetime. Uses simulated annealing metabouristic		
	52 Zhang et al. (2012)	Metahouristic	Two Stages	Introduces particle swarm optimizaton (PSO) metaheuristic		
	[107] Sun et al. (3012)	Metaheuristic	Two Stages	Introduces VNE in multi-datacenter environments		
	108 Ly et al. (2012)	Metaheuristic	Uncoordinate d	Introduces VNE in wireless mesh networks		
	90 Leinders et al.* (2012)	He uristic	Two Stages	Uses the approach in 22 to solve the VNE for an arbitrary pool of heterogeneous resources		
	54 Masti and Raghavan (2012)	Heuristic	Two Stages	VNE considering the residual capacity of the substrate links		
	(859) Zhang et al. (2012)	Exact/Heuristic	One Stage	Recover link failures providing disjoint SN hackup paths		
C/D/R	55 Butt et al.* (2010)	Heuristic	Two Stages	Reactive reconfiguration of virtual links and nodes causing rejection to loss critical SN regions		
	22 Yu et al.* (2010)	Heuristic	Uncoordinate d	Reconfigure the embedding by changing the splitting ratio in the multipath VLIM solution		
	110 Schaffrath et al. (2010)	Exect	One Stage	ILP-based VNE. Dynamically reconfigures existing mapping:		
	(111) Chen et al. (2011)	Heuristic	Two Stages	Periodic reconfiguration of SN nodes with high utilization		
D/S/R	B Chowdhury et al. (2010)	Heuristic	InterfaP	First InterInP VNE proposal. Mediates between InP and SF interests. VNR is split across InPs and embedded locally		
D/D/R	112 Heads et al. (2010	Heuristic	Two Stares	Fault-tolevant VNE that arts arou node and link failures		
	Contraction of the Contract			the second		

Related Work

TABLE III TAXONOMY OF CONCISE VNE APPROACHE

Category	R efe rence	Optimization	Coordination	Contribution		Category	R efe rence	0
C/S/C	(35) Inführ and Raidl (2011)	Exat	One Stage	Provides delay, location and routing constraints		0.002	[27] Bouid et al 7 (2010)	-
	[39] Liu et al. (2011)	Exact	One Stage	Exact VNE based on correspondence matrices		(a) Thus et al. (2011)	-	
	[60] Trinh et al. (2011)	Exat	One Stage	Exact VNE problem with SLA QoS guarantees				
	(61) Pages et al. (2012)	Exact/Metaheuristic	One Stage	Introduces the VNE for optical networks			[43] Botero et al. (2012)	12
	[H] Lischka and Karl (2009)	Meuristic	One Stage	Provides one stage VNE. Based on SED		(II) Wang and Wolf (2011)	E	
	62 Di et al. (2010)	Heuristic	One Stage	Improvement of the approach in [44]		(94). 85. 86 Shamsi and Brockmeyer	В	
	(63) Ghazar and Sauman (2011)	Heuristic	One Stage	Introduces hierarchical management of the SN		(2007-2009)		
	(64), (65) Yam et al. (2011-2012)	Heuristic	One Stage	First VNE approach in wireless multihop networks, Intro- duces metrics and feasibility measures for wireless VNE		[97] Koslovski et al. (2010)	н	
	[55] Chen et al. (2012)	Heuristic	One Stage	Reduces resource fragmentation		[98] Yu et al. (2010)	Н	
	[66] Yu et al. (2012)	Heuristic	One Stage	One step VNE that increases coordination				
	(67) Liu et al. (2013)	Heuristic	Two Stages	Improve a coordination based on nodes proximity			[99] Ly et al. (2012)	25
	[31]. [23] Shout et al. (2011-2012)	Heuristic	Two Stages	Opportunistic resource sharing to dral with load fluctuation			[36]. [27] Chowdhury et al. (2009-2011)	В
	[68] Li et al. (2012)	Heuristic	Two Starcs	Topology awareness to enforce VNE coordination			[31] Rohman et al. (2010)	13
	[07] Lu and Tamer (2006)	Heuristic	Uncoordinated	Embedding in specific backbone-star VN topologies			[51] Burn of of 2 (2010)	15
	[32] Yu et al.* (2008)	Heuristic	Uncoordinated	Utilizes the KSP alzorithm [13] for VLiM		The Young of al (2020)	- 12	
	[70] Razzag and Sirai (2010)	Heuristic	Uncoordinated	Different K sulses in KSP based VLiM			Circle of an (10.10)	
	[71] Razzai et al. (2011)	Housistic	Uncoordinated	law stiggtes the VNE insect of bottlenecked nodes a			[150] San et al. (2011)	15
	[72] Norueira et al. (2011)	Heuristic	Uncoordinated	VNE considering SN resources heteroperarity				
	[71] Lengters et al.5 (2011)	Houristic	Department	Introduces VNE for wireless actuary testhols			[30] Yu et al. (2011)	35
	[27] [27] margin et al. (2011-2013)	Heuristic	Uncontinued	Introduces hidden hon constraint	_		32 Yu et al.* (2008)	15
	Fig. (In cal. manual (2006)	Manufactor	Depending and	Describer and and and an extern in the SN			[351] Gao et al. (10)	25
	B Bear et (200	Metabourie	C State		n.	(102) Yang et al. (100)		
	Contract (201)	Matahauria	O Date	the loss prove from the loss of the loss of the	1011.	[103] Zho et al. (200)	- 1	
	The second se	And an Article and		topology local e note ranking [2]		[104] Chen et al. (2010)	22	
	[26] Zhang et al. (2012)	Heuristic	Uncoordinated	Maps one vistual node in several substrate nodes				
	[77] Di et al. (2012)	Heuristic	One Stage	Coordinated VNE reducing the number of backtracks by corefully chosing the first virtual node to map			(10) m et al. (2011)	19
	[25] Abedifar and Eilighi (2012)	Heuristic	Unc-condinated	Introduces VNE in the optical domain trying to minimize the number of 2n per link			[23] Sun et al. (2011) [55] Lu et al. (2011)	25
	29 Aris Leisadaus et al. (2012)	Heuristic	Coordinated	Considers importance of virtual nodes for embedding			[3] Gao et al. (2011)	15
	[90] Tar-Ho Lee et al. (2012)	Houristic	laterini ^p	clustering of virtual networks in multi-provider environment			27 Chang et al. (2011)	34
C/D/C	[22] Fajjani et al. (2011)	Heuristic	One Stage	Migration of nodes with bottlenecked adjacent links			[106] Sheng et al. (2011)	34
	[31] Bienkowski et al. (2000)	Hearistic	Two Stages	Migration when service access position changes			[32] Zhang et al. (2012)	M
	[34] Zhi and Ammur* (2006)	Hearistic	Uncoordinated	Reduce the cost of periodic seconfigurations			[107] Sun et al. (3012)	м
	32 Fan and Ammar (2006)	Heuristic	Uncoordinated	Reduces the cost of VNRs reconfiguration			[108] Ly et al. (2012)	м
	[33] Cai et al. (2010)	Heuristic	Uncoordinated	Reconfiguration based on SN evolution			[90] Leinaleux et al.* (2012)	35
	[34] Shun-li and Xue-song (2011)	Heuristic	Uncoordinated	Identifies mapped virtual nodes and links with not optimal mapping and migrate them to save SN resources			[5] Mari and Rocheron (2012)	15
	[35] Sun et al. (2012)	Heuristic	Uncoordinated	Introduces the VNE problem for evolving VNRs			[109] Zhang et al. (2012)	12
D/S/C	[36], [57] Houidi et al. (2010)	Heuristic	Uncoordinated	First distributed approach to solve VNE Proposes a VNE method to minime the communication among substrate nodes	C/D/R	(5) Butt et al.* (2010)	Н	
	F83 Xin et al. (2011)	Hourstie	IntestoP	lateralizes the lateral PVNE for actualized clouds				
	(a) Loss of (2010)	Manufaction	laterlaß	Interfall VAE using historical single of second states			[32] Yu et al.* (2010)	25
	(PT) House and A (2011)	ErotMathemistic	laradaR	WWR is call to criminal work call? N in different Jalls. Denider,			(10) Shotesh and (2010)	
	(27) more or at. (2)(1)	L. LIKE SHILL BECKEISTER	and and	exact and heuristic splitting approaches			[]]] Chen et al. (2011)	B
	(30) Leivadeas et al.* (3012)	Heuristic	InterInP	Graph partitioning InterInP VNE using a heuristic integrating a min k-cat algorithm followed by subgraph isomorphism		D/S/R	[38] Chowdhury et al. (2010)	н
D/D/C	[9] Maquezan et al. (2010)	Heuristic	Uncoordinated	Past distributed dynamic approach. Reorganizes the SN when VNs domails chance		D/D/R	[112] Houidi et al. (2010)	15

TABLE IV DAXONOMY OF REDUNDANT VNE APPROACHES

gary	Reference	Optimization	Coordination	Contribution
7	(42) Housidi et al.* (2011)	Exet	One Stage	First approach providing an ILP exact solution
	(10) Zhang et al. (2011)	Exact	One Stage	Optimal resilient solution attaining an enhanced QoS map- ping. Provides diversified substrate back-up paths
	41 Hotero et al. (2012)	Exact	One Stage	Introduces the energy aware VNE
	(II) Wang and Wolf (2011)	Exact	One Stage	Redefines the VNR as a traffic matrix
	(94), (95), (96) Shamsi and Brockmeyer (2007-2009)	Heuristic	One Stage	Recover link failures by providing backup paths with inter- mediate nodes
	(97) Koslovski et al. (2010)	Heuristic	One Stage	Introduces reliability as a service offered by the InP. Reliable VNEs haved on subgraph isomorphism detection
	[98] Yu et al. (2010)	Heuristic	One Stage	Introduces failure-dependent protection with a back-up solu- tion for each reponal failure
	[99] L.v. et al. (2012)	Heuristic	One Stage	Introduces losses to multicast VNE in wireless mesh activarks
	36.22 Chowdhury et al. (2009-2011)	Heuristie	Two Stages	Coordination in VNE using multi-path for VLiM
	E Rahman et al. (2010)	Heuristic	Two Stages	Upon a failure, the economic penalty is minimized by the pre-reservation of a bandwidth quota for back-up in SN links
	[5] Butt et al.* (2010)	Heuristic	Two Stages	VNE awareness of the SN bottlenesked resources
	[27] Yeaw et al. (2010)	He wistic	Two Stages	Introduces sharing among back up resources. Reduces re- sources allocated for redundancy
	[E0] Sun et al. (2011)	Heuristic	Two Stages	Resilient VNE optimizing the embedding cost and reducing computational complexity
	(H) Yu et al. (3011)	He uniotic	Two Stages	Resilient VNE analyzing failures in substrate nodes
	T2 Yu et al.* (2008)	He urisitie	Uncoordinate d	Introduces the multi-path approach for VLiM
	[301] Cao et al. (10)	Heuristic	Uncoordinate d	Improvement of the opposite in 16
	(102) Yang et al. (100)	N I	Con Alles	I see as the monthly reacted to desity
	[103] Zho et al. (2010)	Burist	Up or instead	taps or and not to ultip substance odes
	[304] Chen et al. (2010)	Periot.	Oscoordinaelu	Reactive resistency protection approach a good failures during the online VNE process. Considers justice-strate link failures
	[105] Yu et al. (2011)	Heuristic	Uncoordinate d	Proactive VNE approach offering protection against SN link failures for links with high stress
	[23] Sun et al. (2011)	Heuristic	Uncoordinate d	Introduces stochastic BW demand to the VNE
	55 Lu et al. (2011)	He unisatie	Uncoordinate d	Introduces load halancing in links
	[3] Gao et al. (2011)	He unionic	Uncoordinate d	Proactive resilient VLiM approach sharing back-up paths
	[37] Cheng et al. (2011)	Metahoaristic	Two Stages	Introduces topology-awareness in VNE
	[356] Sheng et al. (2011)	Metaheuristic	Two Stages	Embedding time depends on VNR lifetime. Uses simulated amending metabouristic
	[32] Zhang et al. (2012)	Metaheuristic	Two Stages	Introduces pasticle swarm optimization (PSO) metaheuristic
	[107] Sun et al. (2012)	Metaheuristic	Two Stages	Introduces VNE in multi-datacenter environments
	[108] Lv et al. (2012)	Metaheuristic	Uncoordinate d	Introduces VNE in wireless mesh networks
	(9) Leindens et al.* (2012)	Heuristic	Two Stages	Uses the approach in [22] to solve the VNE for an arbitrary pool of heterogeneous resources
	[54] Masti and Raghavan (2012)	Heuristic	Two Stages	VNE considering the residual capacity of the substrate links
	[359] Zhang et al. (2012)	Exact/Wexanistic	One Stage	Recover link failures providing disjoint SN backup paths
R	(5) Butt et al.* (2010)	Heuristic	Two Stages	Reactive reconfiguration of virtual links and nodes causing rejection to less critical SN regions
	33 Yu et al.* (2010)	Heuristic	Uncoordinate d	Reconfigure the embedding by changing the splitting notio in the multipath VLIM solution
	(110) Schafforth et al. (2010)	Exect	One Stage	ILP-based VNE. Dynamically reconfigures existing mappings
	[]]] Chen et al. (2011)	Heuristic	Two Stages	Periodic reconfiguration of SN nodes with high stillization
R	[3] Chowlhury et al. (2010)	Heuristic	InterInP	First Interful? VNE proposal. Mediates between InP and SP interests. VNR is split across InPs and embedded locally
R	[]]]2] Houidi et al. (2010)	Heuristic	Two Stages	Fault-televant VNE that acts upon node and link failures

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

TU München, August 12th, 2014 12

Our Model

Our Model

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Motivation #1: Business

Provider Incentives: Minimizing Load

Provider Incentives: Maximizing Utilization by Collocation

Motivation #2: Modeling Opportunities

Modeling Opportunities: Evolution of VNets

Reservation of maximal allocations over the whole time?

Modeling Opportunities: Migrations

Modeling Opportunities: Migrations

In previous work instantaneous operation!

Modeling Opportunities: Migrations

Modeling Opportunities: Fine-grained Migrations

Important Decision: Continuous-Time Model!

Important Decision: Continuous-Time Model!

Problem Statement

Temporal Virtual Network Embedding Problem (TVNEP)

Access Control	Decide which of the requests to embed.
Resource Mapping	Find embeddings for requests.
Scheduling	Find appropriate start and end times for requests.
Feasibility	For <i>each</i> point in time the substrate's capacity is not exceeded.

Local Embedding

Classic VNEP Task Access Control Decide which of the requests to embed. Resource Mapping Find embeddings for requests.

Mapping can be easily done with Mixed-Integer Programming. Not explained here.

Local Embedding

Assume that for each request $R \in \mathcal{R}$ allocations on each node and each link are given.

```
alloc(\mathsf{R}): Nodes \cup Links \rightarrow \mathbb{R}_{\geq 0}
```


Overview

Contributions

- **O** Continuous-time Mixed-Integer Programming formulations for TVNEP
- cΣ-Model utilizes state-space and symmetry reductions to render solving TVNEP (computationally) feasible
- ${f 0}$ Greedy polynomial time heuristic which is based on c Σ -Model
- Initial computational evaluation

Joint work with Stefan Schmid, Anja Feldmann: IEEE IPDPS 2014.

Assume for now: Local embeddings and start / end times are fixed.

Check the feasibility of the $2 \cdot |\mathcal{R}| - 1$ states.

Abstract Event Model

Modeling Continuous-Time: Abstract Event Model

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Reconstructing States: Δ -Model

- Compute state *changes*: $\Delta_{\mathbf{e}_i} : \mathbf{V}_{\mathbf{S}} \cup \mathbf{E}_{\mathbf{S}} \to \mathbb{R}$ via $\chi^+_{\mathbf{R}}(e_i), \chi^-_{\mathbf{R}}(e_i)$
- 2 Enforce $\sum_{j=1}^{i} \Delta_{\mathbf{e}_{j}} \leq \mathbf{c}_{\mathbf{S}}$ for each state

$\Delta\text{-Model:}$ Computing State Changes

Conditional Assignment

 $\forall \mathbf{e}_i \in \mathcal{E}.$

$$\Delta_{\mathbf{e}_{i}} = \begin{cases} +alloc(\mathsf{R}_{1}) & \text{, if } \chi_{\mathsf{R}_{1}}^{+}(\mathbf{e}_{i}) = 1 \\ -alloc(\mathsf{R}_{1}) & \text{, if } \chi_{\mathsf{R}_{1}}^{-}(\mathbf{e}_{i}) = 1 \\ \vdots \\ +alloc(\mathsf{R}_{k}) & \text{, if } \chi_{\mathsf{R}_{k}}^{+}(\mathbf{e}_{i}) = 1 \\ -alloc(\mathsf{R}_{k}) & \text{, if } \chi_{\mathsf{R}_{k}}^{-}(\mathbf{e}_{i}) = 1 \end{cases}$$

$\Delta\text{-Model:}$ Computing State Changes

Conditional Assignment via Big-M Constraints $\forall R \in \mathcal{R}. \ \forall \mathbf{e}_i \in \mathcal{E}.$

$$\begin{split} \Delta_{\mathbf{e}_{i}} &\leq + \operatorname{alloc}(\mathsf{R}) + \mathbf{c}_{\mathbf{S}}(1 - \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i})) \\ \Delta_{\mathbf{e}_{i}} &\geq + \operatorname{alloc}(\mathsf{R}) - \mathbf{c}_{\mathbf{S}}(1 - \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i})) \cdot 2 \\ \Delta_{\mathbf{e}_{i}} &\leq - \operatorname{alloc}_{V}(\mathsf{R}) + \mathbf{c}_{\mathbf{S}}(1 - \chi_{\mathsf{R}}^{-}(\mathbf{e}_{i})) \cdot 2 \\ \Delta_{\mathbf{e}_{i}} &\geq - \operatorname{alloc}_{V}(\mathsf{R}) - \mathbf{c}_{\mathbf{S}}(1 - \chi_{\mathsf{R}}^{-}(\mathbf{e}_{i})) \end{split}$$

Δ -Model: Computing State Changes

Big-M Assignment of Start

 $\forall \mathsf{R} \in \mathcal{R}. \ \forall \mathbf{e}_i \in \mathcal{E}.$

$$egin{aligned} \Delta_{\mathbf{e}_i} &\leq + \operatorname{alloc}(R) + \mathbf{c}_{\mathbf{S}}(1 - \chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \ \Delta_{\mathbf{e}_i} &\geq + \operatorname{alloc}(R) - \mathbf{c}_{\mathbf{S}}(1 - \chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \cdot 2 \end{aligned}$$

Δ -Model: Computing State Changes

Big-M Assignment of Start

 $\forall \mathsf{R} \in \mathcal{R}. \ \forall \mathbf{e}_i \in \mathcal{E}.$

$$egin{aligned} \Delta_{\mathbf{e}_i} &\leq + \operatorname{alloc}(R) + \mathbf{c}_{\mathbf{S}}(1 - \chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \ \Delta_{\mathbf{e}_i} &\geq + \operatorname{alloc}(R) - \mathbf{c}_{\mathbf{S}}(1 - \chi^+_{\mathrm{R}_1}(\mathbf{e}_i)) \cdot 2 \end{aligned}$$

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi^+_{
m R_i}({f e}_j)=$$
 0.5 for $j\in\{1,2\}$:

$$-\mathbf{c_S} + alloc(\mathsf{R_j}) \leq \Delta_{\mathbf{e}_j} \leq alloc(\mathsf{R_j}) + 0.5 \cdot \mathbf{c_S}$$

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi^+_{
m R_i}({f e}_j)=$$
 0.5 for $j\in\{1,2\}$:

$$-\mathbf{c_S} + alloc(\mathsf{R}_j) \leq \Delta_{\mathbf{e}_j} \leq alloc(\mathsf{R}_j) + 0.5 \cdot \mathbf{c_S}$$

Implications

Δ_{e_j} ≤ 0 is always feasible (when χ⁺_{R_j}(e_j) = 0.5 for j ∈ {1,2})
Δ_{e_i} < 0 possible if alloc(R_i) < c_s

Δ-Model Issue: LP Smearings!

LP Relaxation Example

$$\chi^+_{
m R_j}({f e}_j)=0.5 \ {
m for} \ j\in\{1,2\}:$$

$$-\mathbf{c_S} + \textit{alloc}(\mathsf{R}_j) \leq \Delta_{\mathbf{e}_j} \leq \textit{alloc}(\mathsf{R}_j) + 0.5 \cdot \mathbf{c_S}$$

Implications

- $\Delta_{\mathbf{e}_j} \leq 0$ is always feasible (when $\chi^+_{\mathrm{R}_j}(\mathbf{e}_j) = 0.5$ for $j \in \{1, 2\}$)
- **2** $\Delta_{\mathbf{e}_j} < 0$ possible if $alloc(R_j) < c_S$

This is really bad!

 states do not 'materialize' well in LP relaxations: allocations will *never* be accounted for in the substrate's state

2 bounding is unable to reduce search space

Σ -Model: Intuition

Requirement

Resource allocations must materialize in the substrate's state.

Σ -Model: Intuition

 $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \mathcal{E}.$

$$\Sigma(R,\mathbf{e}_i) = \sum_{j=1,\dots,i} \chi^+_{\mathsf{R}}(\mathbf{e}_j,\mathsf{R}) - \sum_{j=1,\dots,i} \chi^-_{\mathsf{R}}(\mathbf{e}_j,\mathsf{R})$$

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

cΣ-Model

$c\Sigma$ -Model Outline

Computational Trade-Off

- The Σ -Model is provably stronger than the Δ -Model.
- However, the Σ -Model uses (approximately) $2 \cdot |\mathcal{R}|$ more variables!

Σ -Model can be strengthened: c Σ -Model

Compactification Consider only partial event order. Yields state-space and symmetry reductions.

User cuts Use temporal information to reduce *state-space* and strengthen formulation.

$c\boldsymbol{\Sigma}$ Optimization: State Compactification
c $\Sigma\text{-}\mathsf{Model}:$ State Compactification

We only need to check feasibility after a request's start!

Matthias Rost (TU Berlin)

42

$c\Sigma$ -Model: State Compactification

• consider only $|\mathcal{R}| + 1$ event points

- injective mapping of request starts onto first $|\mathcal{R}|$ event points
- mapping of request R's end onto event e_j :
 - R ends after \mathbf{e}_{j-1} and before \mathbf{e}_j

cΣ-Model

c Σ -Model: State Compactification

State-space reduction

Number of states is halved \Rightarrow number of variables is halved.

cΣ-Model

$c\Sigma$ -Model: State Compactification is Symmetry Reduction

c Σ -Model: State Compactification is Symmetry Reduction

cΣ-Model

$c\Sigma$ -Model: State Compactification is Symmetry Reduction

Same order as before!

cΣ-Model

$c\Sigma$ -Model: State Compactification is Symmetry Reduction

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Greedy Heuristic $c\Sigma^G_A$

Greedy Heuristic $c\Sigma_A^G$

Outline

- Order requests according to their earliest start time.
- 2 Iteratively try to embed requests as soon as possible using $c\Sigma$ -Model
 - If the request was embedded: fix start and end time.

Greedy Heuristic $c\Sigma_A^G$

Outline

- Order requests according to their earliest start time.
- 2 Iteratively try to embed requests as soon as possible using $c\Sigma$ -Model
 - 1 If the request was embedded: fix start and end time.

Theorem: $c\Sigma_A^G$ is polynomial-time algorithm

There are maximally $|\mathcal{R}|$ many possible orderings to consider.

Important

All link allocations are re-computed in each iteration.

Computational Evaluation

Scenario: One day workload

- \bullet 20 requests (star-graphs) are to be embedded on 4 $\times\,5$ grid
- Expected inter-arrival time of one hour [Poisson]
- Expected duration of 3.5 hours [Weibull: heavy-tailed]
- Node-mappings are fixed to concentrate on temporal aspects
- Link-mappings are not fixed
- Increasing temporal flexibility: 0, 30, 60, ..., 300 minutes.

Computational Setup

- 24 independently generated scenarios
- Limited runtime of one hour for MIPs [Gurobi]

Task: Maximize revenue \propto load \cdot duration

- O Decide which requests to embed (access control).
- Ind time-invariant embedding (routing of data).
- O Decide when to embed the requests.

Objective Gap: MIP Formulations

Runtime: MIP Formulations

Benefit of Flexibility

Matthias Rost (TU Berlin)

Performance of $c\Sigma_A^G$

Computational Evaluation

Performance of $c\Sigma_A^G$

Conclusion: Modeling Opportunities / Discussion

A possible application: Google B4

Google's Software Defined WAN

Goal: Utilize close to 100% of available bandwidth.

A possible application: Google B4

Beyond the Classic VNEP

Important Notice

We can schedule *anything

- The way embeddings are computed can be changed arbitrarily.
- We can use the presented approach to e.g. schedule in-network processing service deployments!

Takeaway message part I

- The 'way' a MIP is formulated can have a significant impact on the solver's ability to *efficiently* solve it.
- Our approach proposes a very general framework for offline scheduling of networking tasks.

References I

- A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach. Virtual network embedding: A survey. 2013.
- [2] C. A. Floudas and X. Lin.

Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review.

Computers & Chemical Engineering, 28(11), 2004.

- [3] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. A marketplace for cloud resources. In Proc. of the ACM EMSOFT '10, 2010.
- [4] L. Mai, E. Kalyvianaki, and P. Costa.
 Exploiting time-malleability in cloud-based batch processing systems. In *Proceeding of the ACM SIGOPS LADIS Workshop '13*, 2013.
- [5] S. Jain et al.

B4: experience with a globally-deployed software defined wan. In *Proc. of the ACM SIGCOMM '13*, 2013.

References II

[6] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang. Proteus: A topology malleable data center network. In Proc. of the ACM SIGCOMM HotNets Workshop '10, 2010.

Backup

The End

Future Work / Discussion

Modeling

- Consider flexible duration of requests.
- Consider delay-tolerant VNets.
- Consider more complex scenarios, e.g. migrations.

Algorithmic

- Incorporate other heuristical embedding approaches.
- Develop local-search algorithms for the TVNEP.

Backup

Related Work

MapReduce [4]

VNet Survey [1]

Google B4 [5]

- Chemical plants [2] Utilize similar event abstraction, but no resource sharing.
- Business Perspective [3] Marketplace based on temporal flexibilities.
 - Consider temporally predictable jobs (MapReduce-like) and allow for temporally interleaved resource sharing.
 - There is no comparable work on TVNEP.
 - Software-defined network (wide-area) connecting data centers. Only some dozen locations.

Optimization: Temporal Dependency Graph

Backup

Temporal Dependency Graph

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

TU München, August 12th, 2014 62

Temporal Dependency Graph

Latest possible point in time for R_1 to start is less than the earliest point in time at which R_2 can start. \Rightarrow We know that R_1 must start before R_2 .

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Temporal Dependency Graph (Formal)

Definition

•

$$egin{aligned} &\mathcal{G}_{dep}(\mathcal{R}) = (V_{dep}, E_{dep}) \ &\mathcal{V}_{dep} = \mathcal{R} imes \{ start, end \} \ &\mathcal{E}_{dep} = \{(v, w) \in V_{dep}^2 | latest(v) < earliest(w) \} \ &earliest((\mathbb{R}, t) \in V_{dep}) = egin{cases} t_R^s &, \text{ if } t = start \ t_R^s + \mathbf{d}_{\mathbb{R}} &, \text{ if } t = end \ &latest((\mathbb{R}, t) \in V_{dep}) = egin{cases} t_R^e - \mathbf{d}_{\mathbb{R}} &, \text{ if } t = start \ t_R^e &, \text{ if } t = end \ \end{pmatrix} \end{aligned}$$

Backup

Weighted Temporal Dependency Graph

Figure: Temporal Dependency Graph with weights

64

Overview $c\Sigma$ -Model

Access Control & Resource Mapping

Variables

 $\begin{array}{ll} \mbox{Access Control} & \mbox{$\mathbf{x}_{\mathcal{R}}:\mathcal{R}\to\mathbb{B}$}\\ \mbox{Node Mapping }\forall \mathsf{R}\in\mathcal{R}. & \mbox{$\mathbf{x}_{V}:\mathbf{V}_{\mathsf{R}}\times\mathbf{V}_{\mathsf{S}}\to\mathbb{B}$}\\ \mbox{Link Mapping }\forall \mathsf{R}\in\mathcal{R}. & \mbox{$\mathbf{x}_{E}:\mathbf{E}_{\mathsf{R}}\times\mathbf{E}_{\mathsf{S}}\to[0,1]$} \end{array}$

Node mapping: $\forall \mathsf{R} \in \mathcal{R}$. $\forall N_v \in \mathbf{V}_{\mathsf{R}}$.

$$\mathbf{x}_{\mathcal{R}}(\mathsf{R}) = \sum_{N_s \in \mathbf{V}_s} \mathbf{x}_V(N_v, N_s)$$

Link mapping: $\forall \mathsf{R} \in \mathcal{R}. \forall L_v = (N_v^+, N_v^-) \in \mathsf{E}_{\mathsf{R}}. \forall N_s \in \mathsf{V}_{\mathsf{S}}$

$$\sum_{L_s \in \delta^+(N_s)} \mathrm{x}_E(L_v, L_s) - \sum_{L_s \in \delta^-(N_s)} \mathrm{x}_E(L_v, L_s) = \mathrm{x}_V(N_v^-, N_s) - \mathrm{x}_V(N_v^+, N_s)$$

 $\begin{aligned} & \text{Macro alloc}_V(R, N_s): \ \forall R \in \mathcal{R}. \forall N_s \in \mathbf{V}_{\mathbf{S}} \\ & \text{alloc}_V(R, N_s) = \sum_{N_v \in \mathbf{V}_{\mathbf{R}}} \mathbf{c}_{\mathbf{R}}(N_v) \cdot \mathbf{x}_V(N_v, N_s) \end{aligned}$

Macro alloc_V(R, N_s): $\forall R \in \mathcal{R}. \forall L_s \in \mathbf{E}_{\mathbf{S}}$ alloc_E(R, L_s) = $\sum_{L_v \in \mathbf{E}_{\mathbf{P}}} \mathbf{c}_{\mathbf{R}}(L_v) \cdot \mathbf{x}_E(L_v, L_s)$

Access Control & Resource Mapping

Mapping start injectively: $\forall \mathbf{e}_i \in {\{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}}.$

$$\sum_{\mathsf{R}\in\mathcal{R}} \left(\chi^+_\mathsf{R}(\mathbf{e}_i)
ight) = 1$$
Mapping onto Event Points

Guaranteeing State Feasibility

Variables $alloc_V : \mathcal{R} \times \mathcal{S} \times V_S \to \mathbb{R}_{> \nvdash}$ $alloc_E : \mathcal{R} \times \mathcal{S} \times E_S \to \mathbb{R}_{> \nvdash}$

Computing allocations at states: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathsf{s}_i \in \mathcal{S}. \forall N_s \in \mathsf{V}_{\mathsf{S}} / \forall L_s \in \mathsf{E}_{\mathsf{S}}.$

- $alloc_V(\mathsf{R}, \mathbf{s}_i, N_s) \ge alloc_V(\mathsf{R}, N_s) \mathbf{c}_{\mathbf{S}}(N_s) \cdot (1 \Sigma(R, \mathbf{e}_i))$
- $alloc_E(\mathsf{R}, \mathbf{s}_i, L_s) \ge alloc_E(\mathsf{R}, L_s) \mathbf{c}_{\mathbf{S}}(L_s) \cdot (1 \Sigma(R, \mathbf{e}_i))$

Ensuring feasibility: $\forall s_i \in S. \forall N_s \in V_S / L_s \in E_S.$

•
$$c_{S}(N_{s}) \geq \sum_{\mathsf{R} \in \mathcal{R}} alloc_{V}(\mathsf{R}, \mathsf{s}_{i}, N_{s})$$

•
$$\mathbf{c}_{\mathbf{S}}(L_s) \geq \sum_{\mathsf{R} \in \mathcal{R}} alloc_{E}(\mathsf{R}, \mathbf{s}_i, L_s)$$

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility

Variables

 $\forall \mathsf{R} \in \mathcal{R}. t_{\mathsf{R}}^+, t_{\mathsf{R}}^- \in \mathbb{R}_{\geq 0} \quad \forall \mathbf{e}_i \in \mathcal{E}. t_{\mathbf{e}_i} \in \mathbb{R}_{\geq 0}$

$$\forall \mathsf{R} \in \mathcal{R}.$$
$$\mathbf{d}_{\mathsf{R}} = t_{\mathsf{R}}^{-} - t_{\mathsf{R}}^{+}$$

Setting start times: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in {\{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}}.$

$$t_{\mathsf{R}}^+ \leq \mathsf{t}_{\mathbf{e}_i} + \left(1 - \sum_{j=1,...,i} \chi_{\mathsf{R}}^+(\mathbf{e}_j,\mathsf{R})\right) \cdot \mathsf{T} \qquad t_{\mathsf{R}}^+ \geq \mathsf{t}_{\mathbf{e}_i} - \left(1 - \sum_{j=i,...,|\mathcal{E}|} \chi_{\mathsf{R}}^+(\mathbf{e}_j,\mathsf{R})\right) \cdot \mathsf{T}$$

Setting end times: $\forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in {\{\mathbf{e}_2, \dots, \mathbf{e}_{|\mathcal{R}|+1}\}}.$

$$t_{\mathsf{R}}^- \leq \mathrm{t}_{\mathbf{e}_i} + \left(1 - \sum_{j=2,...,i} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})\right) \cdot \mathsf{T} \qquad t_{\mathsf{R}}^- \geq \mathrm{t}_{\mathbf{e}_{i-1}} - \left(1 - \sum_{j=i,...,|\mathcal{E}|} \chi_{\mathsf{R}}^-(\mathbf{e}_j,\mathsf{R})\right) \cdot \mathsf{T}$$

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility

Temporal Dependency Graph User Cuts

 $\forall v \in V_{dep}.$

$$\sum_{i=|\textit{dist}_{\max}^+(v)|+1}^{\mathcal{R}|+1-|\textit{dist}_{\max}^-(v)|} \chi_{\textit{Event}}(\mathbf{e}_i, v) = 1$$

 $\forall v \in V_{dep}. \forall w \in \textit{dist}_{\max}^{-}(v). \forall \mathbf{e}_i \in \mathcal{E}, \textit{dist}_{\max}(v, w) + 1 \leq i \leq |\mathcal{R}|.$

$$\sum_{j=1}^{i} \chi_{Event}(\mathbf{e}_j, w) \leq \sum_{\substack{\mathbf{e}_j \in \mathcal{E} \\ \text{with } j \leq i - dist_{\max}^-(v, w)}} \chi_{Event}(\mathbf{e}_j, v)$$

Access Control & Resource Mapping

Mapping onto Event Points

Guaranteeing State Feasibility

Guaranteeing Temporal Feasibility

Temporal Dependency Graph User Cuts

Some further optimizations

- Big-M constants are chosen as *tight* as possible
- virtual links can be aggregated if their virtual source or their virtual destination is the same

Applications

Data center

- e.g. MapReduce cycles through different phases, traffic only during 30-60% of execution [6]
- price incentives for customers and providers to allow for / harness temporal flexibility [4]

Wide area networks

- Google uses SDN in the WAN to connect data centers [5]
- scheduling of bandwidth-intensive synchronizations
 - is necessary to achieve good utilization and resource isolation
 - is enabled by central SDN control

Part II: Virtualized In-Network Processing

Mindset

Service Deployment \neq VNet Embedding

- Customer requests communication service between locations.
- Service provider *finds* an appropriate topology.

Publications

- Joint work with Stefan Schmid: OPODIS 2013, arXiv 2013
- My thesis January 2014

What if only '3' users can be handled?

Generalized Communication Services

Communication Services: Multicast

Matthias Rost (TU Berlin)

Communication Services: Multicast

Communication Services: Aggregation

Communication Services: Aggregation

Problem Statement

Questions

- How to compute virtual aggregation / multicasting trees?
- Where to place in-network processing functionality?
- How to trade-off between traffic and processing?

Introductory Example

Introductory Example

Introductory Example

9

Without in-network processing: Unicast

Solution Method

minimal cost flow

Solution uses

- 41 edges
- 0 processing nodes

Figure: Unicast solution

With in-network processing at all nodes

Introductory Example

How to Trade-off?

What we aim for

Introductory Example

Solution Structure

Figure: Virtual Arborescence

Figure: underlying routes

New Model: Constrained Virtual Steiner Arborescence Problem

Definition: CVSAP

Find a Virtual Arborescence connecting senders to the single receiver, s.t.

- Description of substrate is not exceeded,
- Inner nodes are capable of processing flow,
- It the processing nodes' capacities are not exceeded,

minimizing the joint cost for bandwidth allocations and function placement.

Applications Overview

	Network	Application	Technology, e.g.
multicast	ISP	service replication / cache placement [7, 8]	middleboxes / NFV + SDN
	backbone	optical multicast [4]	ROADM + SDH
	all	application-level multicast [11]	different
aggregation	sensor network	value & message aggrega- tion [3, 5]	source routing
	data center	big data / map-reduce: Cam- doop [1]	SDN
	ISP	network analytics: Gigascope [2]	middleboxes / NFV + SDN

MIP Formulations

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence by the explicit construction of paths for all processing nodes
- enforces loop-freeness of connections

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP

- explicitly represent virtual arborescence by the explicit construction of paths for all processing nodes
- enforces loop-freeness of connections

Does not scale well

- number of binary variables:
 #processing nodes · #edges
- 'not so good relaxations' due to weak loop-freeness formulation

Integer Program 1: A-CVSAP-MCF

minimize

$$C_{MCF} = \sum_{e \in E_G} \mathbf{c}_e(f_e + \sum_{s \in S} f_{s,e})$$

$$+ \sum_{s \in S} \mathbf{c}_s \cdot \mathbf{x}_s$$
(MCF-OBJ)

ject to
$$f^{T}(\delta^{+}_{\mathsf{E}\mathsf{MCF}}(v)) = f^{T}(\delta^{-}_{\mathsf{E}\mathsf{MCF}}(v)) + |\{v\} \cap T| \qquad \forall v \in V_{G}$$
 (MCF-1)

$$f^{s}(\delta^{+}_{E^{\mathsf{S}}_{\mathsf{MCF}}}(v)) = f^{s}(\delta^{-}_{E^{\mathsf{S}}_{\mathsf{MCF}}}(v)) + \delta_{s,v} \cdot x_{s} \qquad \forall \ s \in S, v \in V_{\mathsf{G}}$$
(MCF-2)

$$f_e^T + \sum_{s \in S} f_e^s \le \begin{cases} \mathbf{u}_s \mathbf{x}_s, \ e = (s, \mathbf{o}^-), s \in S \\ \mathbf{u}_r, \ e = (r, \mathbf{o}^-) \\ \mathbf{u}_e, \ e \in E_G \end{cases} \quad \forall e \in E_{\mathsf{MCF}}$$
(MCF-3)

$$-|S|(1-f_{\overline{s},o^{-}}^{s}) \leq p_{s} - p_{\overline{s}} - 1 \qquad \forall s, \overline{s} \in S \qquad (\mathsf{MCF-4})$$

$$f^s_{(\bar{s},o^-)} \le x_{\bar{s}}$$
 $\forall s \in S, \bar{s} \in S - s$ (MCF-5*)

$$f_{s,o^-}^s = 0 \qquad \forall s \in S \qquad (MCF-6^*)$$

$$\begin{array}{ll} f_{\overline{s},\mathsf{o}^-}^s + f_{\overline{s},\mathsf{o}^-}^{\overline{s}} \leq 1 & \forall \ s,\overline{s} \in S \\ x_s \in \{0,1\} & \forall \ s \in S \end{array} \tag{MCF-7*}$$

$$\begin{aligned} f_e^T \in \mathbb{Z}_{\geq 0} & \forall \ e \in E_{\mathsf{MCF}} & (\mathsf{MCF-9}) \\ f_e^s \in \{0,1\} & \forall \ s \in S, \ e \in E_{\mathsf{MCF}} & (\mathsf{MCF-10}) \\ p \in [0,|S|-1] & \forall \ s \in S & (\mathsf{MCF-11}) \end{aligned}$$

19

MIP Formulations

Single-Commodity Flow IP

Single-commodity flow formulation

- computes aggregated flow on edges independently of the origin
- does not represent virtual arborescence

Figure: Single-commodity

MIP Formulations

Multi- vs Single-Commodity

Example: 6000 edges and 200 Steiner sites

- Single-commodity: 6000 integer variables
- Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity

Figure: Multi-commodity

VirtuCast Algorithm

VirtuCast Algorithm

Outline of VirtuCast

- Solve single-commodity flow IP formulation.
- ② Decompose IP solution into Virtual Arborescence.

MIP Formulations

Decomposing flow is non-trivial (5 pages proof)!

Flow solution ...

- contains cycles and
- represents arbitrary hierarchies.

Main Results

- decomposition is *always* feasible
- constructive proof: polynomial time algorithm

Integer Program 2: IP-A-CVSAP

minimize	$C_{\rm IP}(x,f) = \sum_{e \in E_c} c_e f_e + \sum_{s \in S} c_s x_s$	((IP-OBJ)
subject to	$f(\delta_{E_{\text{ext}}}^+(v)) = f(\delta_{E_{\text{ext}}}^-(v))$	$\forall v \in V_G$	(IP-1)
	$f(\delta^+_{E^R_{\mathrm{ext}}}(W)) \ge x_s$	$\forall W \subseteq V_G, s \in W \cap S \neq \emptyset$	(IP-2)
	$f(\delta^+_{E^R_{\mathrm{ext}}}(W)) \ge 1$	$\forall W \subseteq V_{G}, T \cap W \neq \emptyset$	(IP-3*)
	$f_e \geq x_s$	$\forall \ e = (s, o_S^-) \in E_{ext}^{S^-}$	(IP-4*)
	$f_e \leq \mathbf{u}_s x_s$	$\forall \ e = (s, o_S^-) \in E_{ext}^{S^-}$	(IP-5)
	$f_{(r,o_r^-)} \leq \mathbf{u}_r$		(IP-6)
	$f_e \leq u_e$	$\forall \ e \in E_G$	(IP-7)
	$f_e = 1$	$orall \ oldsymbol{e} \in oldsymbol{\mathcal{E}}_{ext}^{\mathcal{T}^+}$	(IP-8)
	$f_e = x_s$	$\forall \ e = (o^+, s) \in E_{ext}^{S^+}$	(IP-9)
	$x_s \in \{0,1\}$	$orall \ m{s} \in m{S}$	(IP-10)
	$f_e \in \mathbb{Z}_{\geq 0}$	$\forall \ e \in E_{ext}$	(IP-11)

VirtuCast Heuristics

Outline

- Solving the linear relaxation of the VirtuCast can be done reasonably fast (magnitudes faster than the multi-commodity flow formulation)
- Allows for LP based heuristics that iteratively recompute relaxations

FlowDecoRound Heuristic

- Given a LP solution, computes a flow decomposition and connects nodes randomly according to it
- processing nodes are activated if another node node connects to it, must be connected itself
- failsafe: shortest paths
- uses only a single LP relaxation

```
Algorithm 1: FlowDecoRound
     Input : Network G = (V_C, E_C, c_E, \mu_E). Request
                    R_G = (r, S, T, u_r, c_S, u_S)
                     LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{LP} to MIP Formulations
     Output: A Feasible Virtual Arborescence \hat{T}_{C} or null
 1 set \hat{S} \triangleq \emptyset and \hat{T} \triangleq \emptyset and U = T
  2 set \hat{V}_T \triangleq \{r\}, \hat{E}_T \triangleq \emptyset and \hat{\pi} : \hat{E}_T \rightarrow P_G
                             u_F(e), if e \in E_G
 3 set µ(e)≜
                         \begin{cases} u_r(r) & \text{, if } e = (r, o_r^-) \\ u_S(s) & \text{, if } e = (s, o_S^-) \in E_{\text{ext}}^{S^-} \end{cases}
                                                                                      for all e \in E_{ext}
                                           else
 4 while U \neq \emptyset do
            choose t \in U uniformly at random and set U \leftarrow U - t
            set \Gamma_t \triangleq \text{MinCostFlow} \left( G_{\text{ext}}, \hat{f}, \hat{f}(o^+, t), t, \{o_{\varsigma}^-, o_{r}^-\} \right)
           set \hat{f} \leftarrow \hat{f} - \sum_{(P,f) \in \Gamma_t, e \in P}
 7
            set \Gamma_r \leftarrow \Gamma_r \setminus \{(P, f) \in \Gamma_r | \exists e \in P. u(e) = 0\}
 .
            set \Gamma_t \leftarrow \Gamma_t \setminus \{(P, f) \in \Gamma_t | (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) \text{ is not acyclic } \}
 9
10
            if \Gamma_r \neq \emptyset then
                 choose (P, f) \in \Gamma_t with probability f / \left( \sum_{(P_i, f_i) \in \Gamma_t} f_j \right)
11
                 if P_{|P|-1} \notin \hat{V}_T then
12
                  set U \leftarrow U + P_{|P|-1} and \hat{V}_T \leftarrow \hat{V}_T + P_{|P|-1}
                 set \hat{V}_{\mathcal{T}} \leftarrow \hat{V}_{\mathcal{T}} + t and \hat{E}_{\mathcal{T}} \leftarrow \hat{E}_{\mathcal{T}} + (t, P_{|P|-1})
14
                  and \hat{\pi}(t, P_{|P|-1}) \triangleq P
15
                  set u(e) \leftarrow u(e) - 1 for all e \in P
16 set u(e) \leftarrow 0 for all e = (s, o_s^-) \in E_{ext}^{S^-} with s \in S \land s \notin \hat{V}_T
17 set \overline{T} \triangleq (T \setminus \hat{V}_T) \cup (\{s \in S \cap \hat{V}_T | \delta_p^+ (s) = 0\})
18 for t \in \overline{T} do
           choose P \leftarrow \text{ShortestPath}(G_{evt}^u, c_E, t, \{o_c^-, o_t^-\})
19
                    such that (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) is acyclic
            if P = \emptyset then
20
21
             return null
            set \hat{V}_T \leftarrow \hat{V}_T + t and \hat{E}_T \leftarrow \hat{E}_T + (t, P_{|P|-1}) and \hat{\pi}(t, P_{|P|-1}) \triangleq P
22
           set u(e) \leftarrow u(e) - 1 for all e \in P
23
24 for e \in \hat{E}_T do
           set P \triangleq \hat{\pi}(e)
25
           set \hat{\pi}(e) \leftarrow \langle P_1, \dots, P_{|P|-1} \rangle
27 set \hat{T}_G \triangleq \text{Virtual Arborescence}(\hat{V}_T, \hat{E}_T, r, \hat{\pi})
28 return PruneSteinerNodes(T<sub>G</sub>)
```

MultipleShots

- treats node variables as probabilities and iteratively places processing functionality accordingly
- tries to generate feasible solutions by employing a generalized variant of Prim's MST algorithm

```
Algorithm 2: MultipleShots
     Input : Network G = (V_G, E_G, c_F, \mu_F), Request
                  R_{c} = (r, S, T, u_{e}, c_{e}, u_{e}),
                   LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{LP} to MIP Formulations
     Output: A Feasible Virtual Arborescence \hat{T}_G or null
  1 set |S| \triangleq \{s \in S | \hat{x}_s < 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
  3 set \dot{S}_1 \triangleq |S| \cup and \dot{S}_1 \triangleq [S]
  4 disableGlobalPrimalBound()
 5 repeat
          (\hat{x}, \hat{f}) \leftarrow solveSeparateSolve()
          if infeasibleLP() return null
          set |S| \triangleq \{s \in S | \hat{x}_s < 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
          addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
10
          set \hat{S}_1 \leftarrow \hat{S}_2 \cup |S| and \hat{S}_1 \leftarrow \hat{S}_2 \cup |S|
          set \hat{S} \triangleq S \setminus (\dot{S}_0 \cup \dot{S}_1)
11
          if \hat{S} \neq \emptyset then
12
13
                repeat
14
                     set S_1 \triangleq \hat{S}
15
                      remove s from S<sub>1</sub> with probability 1 - \hat{x}_s for all s \in S_1
                     if S_1 = \emptyset and |S \setminus (\dot{S}_1 \cup \dot{S}_1)| < 10 then
16
17
                           set S_1 \leftarrow S \setminus (\dot{S}_0 \cup \dot{S}_1)
19
                until S_1 \neq \emptyset
10
                addConstraintsLocally(\{x_i = 1 | s \in S_1\})
               set \dot{S}_1 \leftarrow \dot{S}_1 \cup S_1
20
          \hat{T}_{c}^{P} \triangleq (\hat{V}_{\tau}^{P}, \hat{E}_{\tau}^{P}, r, \emptyset) where \hat{V}_{\tau}^{P} \triangleq \{r\} \cup T \cup \hat{S}_{1} and \hat{E}_{\tau} \triangleq \emptyset
21
          set \hat{T}_{G} \triangleq VCPrimConnect(G, R_{G}, \hat{T}_{C}^{P})
22
          if \hat{T}_{C} \neq null then
23
24
               return PruneSteinerNodes(\hat{T}_{c})
25 until \dot{S}_0 \cup \dot{S}_1 = S
26 return null
```

GreedyDiving

- aims at generating a feasible IP solution
- iteratively bounds at least a single variable from below, first fixing node variables
- complex failsafe:
 PartialDecompose + VCPrimConnect

```
Algorithm 3: GreedyDiving
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_{c} = (r, S, T, u_r, c_S, u_S),
                 LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{PP} to MIP Formulations
    Output: A Feasible Virtual Arborescence Tc or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
 3 set \dot{S} \triangleq |S| \cup [S] and \dot{E} \triangleq \emptyset
 4 do
         (\hat{x}', \hat{f}') \leftarrow \text{solveSeparateSolve}()
         if infeasibleLP() and \dot{S} = S then
7
              break
.
         else if infeasibleLP() or objectiveLimit() then
 •
              return null
          set (\hat{x}, \hat{f}) \leftarrow (\hat{x}', \hat{f}')
10
11
         if \dot{S} \neq S then
               set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
12
13
              addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
14
               set \dot{S} \leftarrow \dot{S} \cup |S| \cup [S]
15
               setŜ≜S∖Ś
              if \hat{S} \neq \emptyset then
16
                    choose \hat{s} \in \hat{S} with c_S(\hat{s})/\hat{x} minimal
17
18
                    addConstraintsLocally({x_i = 1})
19
                    set \dot{S} \leftarrow \dot{S} + \hat{s}
         else if \dot{E} \neq E_{m} then
20
21
               set |E| \triangleq \{e \in E_{ext} | |\hat{f}_e - |\hat{f}_e| \le 0.001\},\
              [E] \triangleq \{e \in E_{evt} \mid |\hat{f}_e - [\hat{f}_e]| \le 0.001\}
               addConstraintsLocally{\{f_e = |\hat{f}_e| | e \in |E|\} \cup \{f_e = [\hat{f}_e] | e \in
22
               [E]}
              set E \leftarrow E \cup |E| \cup [E]
23
24
              set \hat{E} \triangleq E_{m} \setminus \hat{E}
              if \hat{F} \neq \emptyset then
25
26
                    choose \hat{e} \in \hat{E} with \lceil \hat{f}_{\hat{e}} \rceil - \hat{f}_{\hat{e}} minimal
27
                    addConstraintsLocally(\{\hat{f}_k > [\hat{f}_k]\})
                    set E \leftarrow E + \hat{e}
28
29
30
              break
31 set \hat{f}_e \leftarrow |\hat{f}_e| for all e \in E_{ext} \setminus \hat{E}
32 set \hat{T}_{C}^{P} \leftarrow \text{PartialDecompose}(G, R_{G}, (\hat{x}, \hat{f}))
33 return VCPrimConnect(G. Rc. Tr)
```

Computational Evaluation

Setup

Topologies

An ISP topology generated by IGen with 2400 nodes.

Instances

Generation Parameters

- five graph sizes I-V
- 15 instances per graph size: different Steiner costs, different edge capacities

	Nodes	Edges	Processing Locations	Senders
Fat tree	1584	14680	720	864
3D torus	1728	10368	432	864
IGen	4000	16924	401	800

Table: Largest graph sizes

VirtuCast + LP-based Heuristics

VirtuCast + LP-based Heuristics

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

MCF-IP

MCF-IP: Performance

VirtuCast LP Heuristics

LP-based Heuristics: Performance on graph size V

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Summary

Algorithmic Study

Inapproximability

Approximations

- NVSTP
- VSTP
- VSAP

Exact Algorithms

- multi-commodity flow
- single-commodity flow
 → VirtuCast

Heuristics

- FlowDecoRound
- MultipleShots
- GreedyDiving
- GreedySelect

Extensive explorative Computational Evaluation

Related Work

Molnar: Constrained Spanning Tree Problems [6]

• Shows that optimal solution is a 'spanning hierarchy' and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [8]

- Consider a weaker variant of multicasting CVSAP without bandwidth
- Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [11]

Provided heuristic and showed improvement in scalability.

Applicability

Multicast scenarios can be modeled accurately

Aggregation scenarios...

Sensor Networks	MapReduce	GigaScope

- commutative good aggregation aggregation factor in general possible of n-1 unrealistic - associative

fully applicable

not really applicable

Future Work

Model Extensions

- prize-collecting variants
- concurrent multicast / aggregation sessions

Application Modeling

- Stratosphere II: Big Data
- UNIFY EU Project: flow analytics

End Part II

References I

- P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea.
 Camdoop: Exploiting In-network Aggregation for Big Data Applications. In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2012.
- [2] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
 Gigascope: A Stream Database for Network Applications.
 In Proc. ACM SIGMOD International Conference on Management of Data, pages 647–651, 2003.
- M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in sensor networks. In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4, pages 2168–2172. IEEE, 2003.
- [4] C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm. Ethernet aggregation and core network models for effcient and reliable iptv services. *Bell Labs Technical Journal*, 12(1):57–76, 2007.
- [5] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in wireless sensor networks. In *IEEE infocom*, volume 2, pages 39–44, 2002.

References II

- [6] M. Molnár. Hierarchies to Solve Constrained Connected Spanning Problems. Technical Report Irimm-00619806, University Montpellier 2, LIRMM, 2011.
- S. Narayana, W. Jiang, J. Rexford, and M. Chiang. Joint Server Selection and Routing for Geo-Replicated Services. In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.
- [8] C. Oliveira and P. Pardalos.
 Streaming cache placement.
 In Mathematical Aspects of Network Routing Optimization, Springer Optimization and Its

Applications, pages 117–133. Springer New York, 2011.

[9] M. Rost and S. Schmid.

The Constrained Virtual Steiner Arborescence Problem: Formal Definition, Single-Commodity Integer Programming Formulation and Computational Evaluation. Technical report, arXiv, 2013.

[10] M. Rost and S. Schmid.

Virtucast: Multicast and aggregation with in-network processing. In R. Baldoni, N. Nisse, and M. Steen, editors, *Principles of Distributed Systems*, volume 8304 of *Lecture Notes in Computer Science*, pages 221–235. Springer International Publishing, 2013.

References III

[11] S. Shi.

A proposal for a scalable internet multicast architecture.

In Washington University, 2001.

GreedySelect

GreedySelect: Efficacy

GreedySelect: Performance

LP-based Heuristics

LP-based Heuristics: Efficacy

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

LP-based Heuristics: Performance on graph size V

Extensive explorative Computational Evaluation

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

Theorem: Inapproximability of CVSAP

Finding a feasible solution is NP-complete!

Wishful thinking: there exists a

- polynomial time algorithm
- solving CVSAP to optimality
- considering all constraints.

Theorem: Inapproximability of CVSAP

Finding a feasible solution is NP-complete!

Approximations

- polynomial
- quality guarantee
- weaker models

Exact Algorithms

- non-polynomial
- optimality
- full model

Heuristics

- polynomial
- no solution guarantee
- full model
Comprehensive algorithmic study

Approximations

- NVSTP
- VSTP
- VSAP

Exact Algorithms

- multi-commodity flow
- single-commodity flow
 - $\rightarrow \mathsf{VirtuCast}$

LP-based Heuristics

- FlowDecoRound
- MultipleShots
- GreedyDiving

Combinatorial Heuristic

GreedySelect

Approximation Algorithms for Variants

Variants

Approximation via related problems

Bottom Line

- Better understanding of how to incorporate virtualized links.
- Obtained lower bounds via reductions.

Exact Algorithms for CVSAP

Overview

Why exact algorithms matter

- allow trading-off runtime with solution quality
- baseline for heuristics

Choice: Integer Programming (IP)

- successfully employed for solving related problems (STP, CFLP, ...)
- generates lower bounds on-the-fly

Combinatorial Heuristic: GreedySelect

Combinatorial Heuristics

On Chickens and Eggs

- How and when to place processing nodes?
- How and when to reserve bandwidth for routes?
- How to react to infeasibilities?

Our Approach

- Place processing functionality and reserve bandwidth jointly.
- Try to avoid infeasibilities by proactive routing decisions.

GreedySelect Heuristic

Greedily either ...

- connect a single node to the connected component of the receiver or
- connect multiple nodes to an inactive processing node

minimizing the averaged discounted cost per connected node.

Selecting processing node + terminals + paths :
$$\mathcal{O}(|V| \cdot |E| + |V|^2 \log |V|)$$

compute $\mathcal{P}_{\bar{s}} \triangleq (\bar{s} \in \bar{S}, T' \subseteq \bar{T}, \mathcal{P}_{T'} = \{P_{t,\bar{s}} | t \in T'\})$,
such that $P_{t,\bar{s}}$ connects t to \bar{s} ,
 $u^{\bar{s}}(e) - |\mathcal{P}_{T'}[e]| \ge 0$ for all $e \in E_G$,
 $2 \le |T'| \le u_{r,S}(\bar{s})$
minimizing $c_{\bar{s},T'} \triangleq \left(\sum_{t \in T'} (c_E(P_{t,\bar{s}}) - c_E(P_{t,R})) + c_E(P_{\bar{s},R}) + c_S(\bar{s})\right) / |T'|$

Matthias Rost (TU Berlin)

LP-based Heuristics

Overview

Linear Relaxations

- The linear relaxation of an IP is obtained by relaxing the integrality constraints of the variables, thereby obtaining a Linear Program (LP).
- Solutions to linear relaxations are readily availabe when using branch-and-bound to solve an IP.
- May provide useful information to guide the construction of a solution.

Usage

- LP-based heuristics are employed within the VirtuCast *solver* to improve the bounding process.
- Yield polynomial time heuristics when used together with the root relaxation.

FlowDecoRound Heuristic

- computes a *flow* decomposition and connects nodes randomly according to the decomposition
- processing nodes are activated if another node node connects to it, must be connected itself
- failsafe: shortest paths

```
Algorithm 4: FlowDecoRound
     Input : Network G = (V_C, E_C, c_E, \mu_E). Request
                     R_G = (r, S, T, u_r, c_S, u_S)
                     LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{LP} to MIP Formulations
     Output: A Feasible Virtual Arborescence \hat{T}_{C} or null
 1 set \hat{S} \triangleq \emptyset and \hat{T} \triangleq \emptyset and U = T
  2 set \hat{V}_{\tau} \triangleq \{r\}, \hat{E}_{\tau} \triangleq \emptyset and \hat{\pi} : \hat{E}_{\tau} \rightarrow P_{G}
                             u_F(e), if e \in E_G
 3 set u(e) ≜
                          \begin{cases} u_r(r) & \text{, if } e = (r, o_r^-) \\ u_S(s) & \text{, if } e = (s, o_S^-) \in E_{\text{ext}}^{S^-} \end{cases}
                                                                                      for all e \in E_{ext}
                                           else
 4 while U \neq \emptyset do
            choose t \in U uniformly at random and set U \leftarrow U - t
            set \Gamma_t \triangleq \text{MinCostFlow} \left( G_{\text{ext}}, \hat{f}, \hat{f}(o^+, t), t, \{o_{\varsigma}^-, o_{r}^-\} \right)
           set \hat{f} \leftarrow \hat{f} - \sum_{(P,f) \in \Gamma_t, e \in P}
 7
            set \Gamma_r \leftarrow \Gamma_r \setminus \{(P, f) \in \Gamma_r | \exists e \in P. u(e) = 0\}
            set \Gamma_t \leftarrow \Gamma_t \setminus \{(P, f) \in \Gamma_t | (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) \text{ is not acyclic } \}
 9
10
            if \Gamma_r \neq \emptyset then
                 choose (P, f) \in \Gamma_t with probability f / \left( \sum_{(P_i, f_i) \in \Gamma_t} f_j \right)
11
                 if P_{|P|-1} \notin \hat{V}_T then
12
                   set U \leftarrow U + P_{|P|-1} and \hat{V}_T \leftarrow \hat{V}_T + P_{|P|-1}
                 set \hat{V}_{\mathcal{T}} \leftarrow \hat{V}_{\mathcal{T}} + t and \hat{E}_{\mathcal{T}} \leftarrow \hat{E}_{\mathcal{T}} + (t, P_{|P|-1})
14
                  and \hat{\pi}(t, P_{|P|-1}) \triangleq P
15
                  set u(e) \leftarrow u(e) - 1 for all e \in P
16 set u(e) \leftarrow 0 for all e = (s, o_s^-) \in E_{ext}^{S^-} with s \in S \land s \notin \hat{V}_T
17 set \overline{T} \triangleq (T \setminus \hat{V}_T) \cup (\{s \in S \cap \hat{V}_T | \delta_p^+ (s) = 0\})
18 for t \in \overline{T} do
           choose P \leftarrow \text{ShortestPath}(G_{evt}^u, c_E, t, \{o_c^-, o_t^-\})
19
                    such that (\hat{V}_T + t, \hat{E}_T + (t, P_{|P|-1})) is acyclic
            if P = \emptyset then
20
21
             return null
            set \hat{V}_T \leftarrow \hat{V}_T + t and \hat{E}_T \leftarrow \hat{E}_T + (t, P_{|P|-1}) and \hat{\pi}(t, P_{|P|-1}) \triangleq P
22
           set u(e) \leftarrow u(e) - 1 for all e \in P
23
24 for e \in \hat{E}_T do
           set P \triangleq \hat{\pi}(e)
25
           set \hat{\pi}(e) \leftarrow \langle P_1, \dots, P_{|P|-1} \rangle
27 set \hat{T}_G \triangleq Virtual Arborescence (\hat{V}_T, \hat{E}_T, r, \hat{\pi})
28 return PruneSteinerNodes(T<sub>G</sub>)
```

Intermezzo: VCPrimConnect

Important Observation

If all placed processing nodes are already connected, all senders can be assigned *optimally* using a minimum cost flow.

Outline

- connect all opened processing nodes in tree via a adaption of Prim's MST algorithm
- assign all sending nodes using min-cost flow

```
Algorithm 5: VCPrimConnect
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_G = (r, S, T, u_r, c_S, u_S),
                  Partial Virtual Arborescence T_G^P = (V_T^P, E_T^P, r, \pi^P)
    Output: Feasible Virtual Arborescence \tilde{T}_{G} = (V_{T}, E_{T}, r, \pi) or null
 1 set U \triangleq \{v | v \in V_T^P \setminus \{r\}, \delta_{eP}^+(v) = 0\}
 2 set \overline{S} \triangleq U \cap S
 3 set V_T \triangleq V_T^P, E_T \triangleq E_T^P and \pi(u, v) = \pi^P(u, v) for all (u, v) \in E_T
4 set u(e) \triangleq u_E(e) - |\pi(E_T)[e]| for all e \in E_G
 5 while \overline{S} \neq \emptyset do
         compute R \leftarrow \{r' | r \in \{r\} \cup (V_T \cap S), r' \text{ reaches } r \text{ in } \mathcal{T}_G, \delta_{E_r}^-(r') < \mathcal{T}_G
 6
         u_r \leq (r')
         compute P = MinAllShortestPath(G<sup>u</sup>, c<sub>E</sub>, \overline{S}, R)
 7
          if P = null then
 8
 9
              return null
         ond
10
11
         set \bar{S} \leftarrow \bar{S} - P_1
         set E_T \leftarrow E_T + (P_1, P_{|P|}) and \pi(P_1, P_{|P|}) \triangleq P
12
         set u(e) \leftarrow u(e) - 1 for all e \in P
13
14 end
15 set \overline{T} \triangleq U \cap T
16 set u_V(r') \triangleq u_{r,S}(r') - \delta_{E_T}^-(r') for all r' \in \{r\} \cup (V_T \cap S)
17 compute \Gamma = \{P^{\overline{t}}\} \leftarrow \text{MinCostAssignment}(G, c_F, u, u_V, \overline{T}, \{r\} \cup V_T \cap S)
18 if \Gamma = \emptyset then
19 return null
20 end
21 set E_T \leftarrow E_T + (t, P_{|Pt|}^t) and \pi(t, P_{|Pt|}^t) \triangleq P^t for all P^t \in \Gamma
22 return T_G \triangleq (V_T, E_T, r, \pi)
```

MultipleShots

- treats node variables as probabilities and iteratively places processing functionality accordingly
- tries to generate a feasible solution in each round via VCPrimConnect

```
Algorithm 6: MultipleShots
     Input : Network G = (V_G, E_G, c_F, \mu_F), Request
                  R_{c} = (r, S, T, u_{e}, c_{e}, u_{e}),
                  LP relaxation solution (\hat{x}, \hat{f}) \in F_{LP} to MIP Formulations
     Output: A Feasible Virtual Arborescence \hat{T}_G or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
  3 set \dot{S}_1 \triangleq |S| \cup and \dot{S}_1 \triangleq [S]
 4 disableGlobalPrimalBound()
 5 repeat
          (\hat{x}, \hat{f}) \leftarrow solveSeparateSolve()
          if infeasibleLP() return null
          set |S| \triangleq \{s \in S | \hat{x}_s < 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s > 0.99\}
          addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
10
          set \hat{S}_1 \leftarrow \hat{S}_2 \cup |S| and \hat{S}_1 \leftarrow \hat{S}_2 \cup |S|
          set \hat{S} \triangleq S \setminus (\dot{S}_0 \cup \dot{S}_1)
11
          if \hat{S} \neq \emptyset then
12
13
                repeat
14
                     set S_1 \triangleq \hat{S}
15
                      remove s from S<sub>1</sub> with probability 1 - \hat{x}_s for all s \in S_1
                     if S_1 = \emptyset and |S \setminus (\dot{S}_1 \cup \dot{S}_1)| < 10 then
16
17
                           set S_1 \leftarrow S \setminus (\dot{S}_0 \cup \dot{S}_1)
18
                until S_1 \neq \emptyset
                addConstraintsLocally(\{x_s = 1 | s \in S_1\})
10
20
               set \dot{S}_1 \leftarrow \dot{S}_1 \cup S_1
          \hat{T}_{c}^{P} \triangleq (\hat{V}_{\tau}^{P}, \hat{E}_{\tau}^{P}, r, \emptyset) where \hat{V}_{\tau}^{P} \triangleq \{r\} \cup T \cup \hat{S}_{1} and \hat{E}_{\tau} \triangleq \emptyset
21
          set \hat{T}_{c} \triangleq VCPrimConnect(G, R_{c}, \hat{T}_{c}^{P})
22
          if \hat{T}_{C} \neq null then
23
               return PruneSteinerNodes(\hat{T}_{C})
24
25 until \hat{S}_0 \cup \hat{S}_1 = S
26 return null
```

GreedyDiving

- aims at generating a feasible IP solution
- iteratively bounds at least a single variable from below, first fixing node variables
- complex failsafe:
 PartialDecompose + VCPrimConnect

```
Algorithm 7: GreedyDiving
    Input : Network G = (V_G, E_G, c_E, u_E), Request
                 R_{c} = (r, S, T, u_r, c_S, u_S),
                 LP relaxation solution (\hat{x}, \hat{f}) \in \mathcal{F}_{PP} to MIP Formulations
    Output: A Feasible Virtual Arborescence Tc or null
 1 set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
 2 addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
 3 set \dot{S} \triangleq |S| \cup [S] and \dot{E} \triangleq \emptyset
 4 do
         (\hat{x}', \hat{f}') \leftarrow \text{solveSeparateSolve}()
         if infeasibleLP() and \dot{S} = S then
 6
7
              break
.
         else if infeasibleLP() or objectiveLimit() then
 •
              return null
          set (\hat{x}, \hat{f}) \leftarrow (\hat{x}', \hat{f}')
10
11
         if \dot{S} \neq S then
               set |S| \triangleq \{s \in S | \hat{x}_s \le 0.01\} and [S] \triangleq \{s \in S | \hat{x}_s \ge 0.99\}
12
13
              addConstraintsLocally(\{x_s = 0 | s \in |S|\} \cup \{x_s = 1 | s \in [S]\})
14
               set \dot{S} \leftarrow \dot{S} \cup |S| \cup [S]
15
               setŜ≜S∖Ś
              if \hat{S} \neq \emptyset then
16
                    choose \hat{s} \in \hat{S} with c_S(\hat{s})/\hat{x}_{\hat{s}} minimal
17
18
                    addConstraintsLocally({x_i = 1})
19
                    set \dot{S} \leftarrow \dot{S} + \hat{s}
         else if \dot{E} \neq E_{m} then
20
21
               set |E| \triangleq \{e \in E_{ext} | |\hat{f}_e - |\hat{f}_e| \le 0.001\},\
               [E] \triangleq \{e \in E_{evt} | |\hat{f}_e - [\hat{f}_e]| \le 0.001\}
               addConstraintsLocally{\{f_e = |\hat{f}_e| | e \in |E|\} \cup \{f_e = [\hat{f}_e] | e \in
22
               [E]}
              set E \leftarrow E \cup |E| \cup [E]
23
24
              set \hat{E} \triangleq E_{m} \setminus \hat{E}
              if \hat{F} \neq \emptyset then
25
26
                    choose \hat{e} \in \hat{E} with \lceil \hat{f}_{\hat{e}} \rceil - \hat{f}_{\hat{e}} minimal
27
                    addConstraintsLocally(\{\hat{f}_k > [\hat{f}_k]\})
                    set E \leftarrow E + \hat{e}
28
29
30
              break
31 set \hat{f}_e \leftarrow |\hat{f}_e| for all e \in E_{ext} \setminus \hat{E}
32 set \hat{T}_{C}^{P} \leftarrow \text{PartialDecompose}(G, R_{G}, (\hat{x}, \hat{f}))
33 return VCPrimConnect(G. Rc. Tr)
```

Backup Decomposition Example

Example

Matthias Rost (TU Berlin)

Beyond the Classic VNEP

Example

Backup Decomposition Example

Example

Redirecting Flow

Violation of Connectivity Inequality

$$f(\delta^+_{E^R_{\mathrm{ext}}}(W)) \ge x_s \qquad \forall \ W \subseteq V_G, s \in W \cap S \neq \emptyset$$

Redirecting Flow

There exists a path from v towards o_s^- in W.

Reasoning

- **1** Flow preservation holds within W.
- 2 s could reach o_r^- via v before the reduction of flow.
- v receives at least one unit of flow.
- I Flow leaving v must eventually terminate at o_S.

S

Redirecting Flow

Redirection towards o_{S}^{-} is possible!

There exists a path from v towards o_s^- in W.

Reasoning

- Flow preservation holds within W.
- 2 s could reach o_r^- via v before the reduction of flow.
- \bigcirc v receives at least one unit of flow.
- Flow leaving v must eventually terminate at o_S^- .

Backup

Decomposition Example

Backup

Decomposition Example

Final Solution

Related Work

Molnar: Constrained Spanning Tree Problems [6]

• Shows that optimal solution is a 'spanning hierarchy' and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [8]

- Consider a weaker variant of multicasting CVSAP without bandwidth
- Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [11]

Provided heuristic and showed improvement in scalability.