Transiently Secure Network Updates

000

Arne Ludwig', Szymon Dudycz², Matthias Rost ${ }^{1}$, Stefan Schmid ${ }^{3}$
TU Berlin', University of Wroclaw², Aalborg University ${ }^{3}$

Network Updates

How to transition from old to new path?

old path

new path

While not discarding any packets!

Network Updates Happen

Error prone task

 manual updates per device, despite global goalsMisconfiguration on switches that caused a "bridge loop". [2012]

A network change was [...] executed incorrectly [...] re-mirroring storm [2011]

Model

Model

Software-Defined Networking (SDN)

- Separate control from data plane
- Logically centralized network view (controller)
- Not only destination based (match-action rules)

Model

Model

Strong Consistency

Two-phase commit [REI12] \rightarrow Either old or new policy

Strong Consistency

Two-phase commit [REI12] \rightarrow Either old or new policy

Tagging packets at ingress port

Strong Consistency

Two-phase commit [REI12] \rightarrow Either old or new policy

Cons:

- Needs more switch memory
- Problematic with middleboxes (changed headers)

The Challenge: Transiently Secure Updates

- Consider dynamic updates without tagging [Mahajan et al., HotNets '13]
- Consistent forwarding state needs to be secured:
- Ensure reachability by forbidding loops
- Ensure traversal of waypoints, e.g. firewalls

Asynchronous Updates: Timing matters

We häve to be selective which switches to update

Asynchronous Updates: Round model

Model Representation

Model Representation

Model Representation

Model Representation

O Safe to be updated
O Safe to be left untouched

Model Representation

Solid lines = current path
Dashed lines = new path

Consistency Properties

Property: Strong Loop Freedom (SLF)

State

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Property: Strong Loop Freedom (SLF)

State

Temporary forwarding graph

- i.e. the union of previously and newly enabled edges does not contain any directed loop.

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Temporary forwarding graph

- i.e. the union of previously and newly enabled edges does not contain any directed loop.

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Property: Strong Loop Freedom (SLF)

State

Temporary Forwarding Graph

Property: Relaxed Loop Freedom (RLF)

State
Temporary Forwarding Graph

Property: Relaxed Loop Freedom (RLF)

State
Temporary Forwarding Graph

Connected component of the temporary forwarding graph containing the source does not contain directed loops.

$S_{\text {SIGMETKCL 2016, AKties Juad-3es-Pins }} d$

Property: Relaxed Loop Freedom (RLF)

State
Temporary Forwarding Graph

Connected component of the temporary forwarding graph containing the source does not contain directed loops.

Finitely many packets
June 17th, 2016

Property: Relaxed Loop Freedom (RLF)

State
Temporary Forwarding Graph

Property: Relaxed Loop Freedom (RLF)

State
Temporary Forwarding Graph

Observation: RLF requires one round less than SLF.

Property: Waypoint Enforcement (WPE)

Increasing number of middleboxes [Sherry et al., SIGCOMM '12]

Firewall
new path

Firewall

Property: Waypoint Enforcement (WPE)

'Waypoint (e.g. firewall) may never be bypassed.'

Solid lines = current path : Dashed lines = new path

Property: Waypoint Enforcement (WPE)

Temporary Forwarding Graph

There may not exist a path bypassing the waypoint in the Temporary Forwarding Graph.

Property: Waypoint Enforcement (WPE)

State
Temporary Forwarding Graph

$s \quad v_{1} \quad v_{2} \quad d$

Overview

Task: Minimize overall update time, while

- ensuring Loop Freedom (LF)
- ensuring Waypoint Enforcement (WPE)

Theory

- LF + WPE may conflict
- Deciding LF + WPE is NP-hard
- other 'negative' results

Practice

- Mixed-Integer Programming Formulations
- Qualitative and Quantitative Analysis

Theory: LF and WPE may conflict

LF and WPE may Conflict

LF and WPE may Conflict

Violates WPE

LF and WPE may Conflict

Violates WPE

LF and WPE may Conflict

Violates WPE \quad Violates LF

LF and WPE may Conflict

Violates WPE \quad Violates LF

LF and WPE may Conflict

Violates WPE \quad Violates LF

LF and WPE may Conflict

Some update problems are unsolvable when considering LF and WPE.

LF and WPE may Conflict

Some update problems are unsolvable when considering LF and WPE.

Independent of whether RLF or SLF is considered.

LF and WPE may Conflict

Some update problems are unsolvable when considering LF and WPE.

Can we determine these cases easily?

Theory: Deciding whether an Update Schedule exists is NP-hard

Deciding existence of Schedule is NP-hard

- Proof by 3-SAT reduction
- Given a 3-SAT formula we construct a network update instance and show that there exists an update schedule iff. the formula is satisfiable.

Deciding existence of Schedule is NP-hard

- Proof by 3-SAT reduction
- Given a 3-SAT formula we construct a network update instance and show that there exists an update schedule iff. the formula is satisfiable.
- 3-SAT Clause $\mathcal{K}_{1} \wedge \mathcal{K}_{2} \wedge \ldots \wedge \mathcal{K}_{m}$ over Variables $x_{1,} x_{2}, \ldots, x_{k}$
- Here: we only sketch the idea.

Construction of 3-SAT Reduction: Outline

Construction of 3-SAT Reduction: Variable Gadgets

$$
x_{j-1} \quad x_{j} \quad x_{j+1}
$$

Construction of 3-SAT Reduction: Variable Gadgets

One node for each

$$
x_{j-1}
$$

x_{j} negative occurrence of

Construction of 3-SAT Reduction: Clause Gadgets

Clause gadget is tangled, as long as neither of these nodes is updated.

Construction of 3-SAT Reduction: Connection Clause with Variable Gadgets

Construction of 3-SAT Reduction:

 Connection Clause with Variable Gadgets

To untangle clauses, a consistent assignment Of truth values to variables must be found.

Construction of 3-SAT Reduction: Untangling Clauses

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets
3) For each clause select (arbitrarily) one of the valid assignments

Construction of 3-SAT Reduction: Untangling Clauses

1) Trigger updates in variable gadgets depending on truth value of the variable
2) Enable now bypassed backward rules from within variable gadgets
3) For each clause select (arbitrarily) one of the valid assignments. This untangles all clauses.
4) (start updating remaining nodes)

Main Result

3-SAT formula is satisfiable

 iff.
constructed network update instance is updateable

Main Result

3-SAT formula is satisfiable

 iff.
constructed network update instance is updateable

Independent of whether RLF or SLF is considered.

Practice: Computing Update Schedules

Computing Update Schedules

- Finding a solution is NP-hard
- We employ Mixed-Integer Programming to compute solutions
- evaluate computational hardness
- quantitatively analyze feasibility

Computing Update Schedules

- LF and WPE are checked using Temporary Forwarding Graph
- Given decisions which switches to update, the state and the Temporary Forwarding Graph follow

Computing Update Schedules

Assign update of switch v to a single round r :

$$
x_{v}^{r} \in\{0,1\}
$$

Computing Update Schedules

Assign update of switch v to a single round r :

$$
x_{v}^{r} \in\{0,1\}
$$

Represent forwarding state after round r by

$$
y_{u, v}^{r} \in[0,1]
$$

Computing Update Schedules

Assign update of switch v to a single round r :

$$
x_{v}^{r} \in\{0,1\}
$$

Represent forwarding state after round r by

$$
y_{u, v}^{r} \in[0,1]
$$

Represent Temporary
Forwarding Graph by

$$
y_{u, v}^{r-1 \vee r} \in[0,1]
$$

Computing Update Schedules

Assign update of switch v to a single round r :

$$
x_{v}^{r} \in\{0,1\}
$$

Represent forwarding state after round r by

$$
y_{u, v}^{r} \in[0,1]
$$

Represent Temporary
Forwarding Graph by

$$
y_{u, v}^{r-1 \vee r} \in[0,1]
$$

$$
\begin{aligned}
1 & =\sum_{r \in \mathcal{R}} x_{v}^{r} \\
y_{u, v}^{r} & =1-\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}} \quad \text { (old edges) } \\
y_{u, v}^{r} & =\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}} \quad \text { (new edges) } \\
y_{u, v}^{r u, v r} & \geq y_{u, v}^{r-1} \\
y_{u, v}^{r-1 \vee r} & \geq y_{u, v}^{r} \\
y_{u, v}^{r-1 \vee r} & \leq \frac{l_{v}^{r}-l_{u}^{r}-1}{|V|-1}+1 \\
\bar{a}_{s}^{r, w} & =1 \\
\bar{a}_{v}^{r, w} & \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r-1}-1 \\
\bar{a}_{v}^{r, w} & \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r}-1 \\
\bar{a}_{d}^{r}, w & =0
\end{aligned}
$$

Computing Update Schedules

Enforce SLF by employing Miller-Tucker-Zemlin Constraints by level variables:

$$
I_{v}^{r} \in[0,|V|-1]
$$

Computing Update Schedules

Enforce SLF by employing Miller-Tucker-Zemlin Constraints by level variables:

$$
I_{v}^{r} \in[0,|V|-1]
$$

Computing Update Schedules

Enforce SLF by employing Miller-Tucker-Zemlin Constraints by level variables:

$$
l_{v}^{r} \in[0,|V|-1]
$$

Guarantee WPE by reachability constraints:
Nodes reachable from the source, without using waypoint w, are 'marked' by $\bar{a}_{v}^{r, w}=1$

$$
\begin{aligned}
& 1=\sum_{r \in \mathcal{R}} x_{v}^{r} \\
& y_{u, v}^{r}=1-\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}} \quad \text { (old edges) } \\
& y_{u, v}^{r}=\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}} \quad \text { (new edges) } \\
& y_{u, v}^{r-1 \vee r} \geq y_{u, v}^{r-1} \\
& y_{u, v}^{r-1 \vee r} \geq y_{u, v}^{r} \\
& y_{u, v}^{r-1 \vee r} \leq \frac{l_{v}^{r}-l_{u}^{r}-1}{|V|-1}+1 \\
& \bar{a}_{s}^{r, w}=1 \\
& \bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r-1}-1 \underset{\text { cident to w) }}{\left(\begin{array}{l}
\text { edges not in- }
\end{array}\right)} \\
& \bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r}-1 \quad \begin{array}{l}
\text { (edges not in- } \\
\text { cident to w) }
\end{array} \\
& \bar{a}_{d}^{r, w}=0
\end{aligned}
$$

Computing Update Schedules

Guarantee WPE by reachability constraints:
Nodes reachable from the source, without using waypoint w , are 'marked' by $\bar{a}_{v}^{r, w}=1$

Computing Update Schedules

- RLF can be realized similarly, but is more complex to compute.

Computing Update Schedules

- RLF can be realized similarly, but is more complex to compute.
- Objective: minimize \#rounds

Mixed-Integer Program 1: Optimal Rounds (-R-)	
	(Obj)
$R \geq r \cdot x_{v}^{r}$	$r \in \mathcal{R}, v \in V \quad$ (1)
$1=\sum_{r \in \mathcal{R}} x_{v}^{r}$	$v \in V \quad$ (2)
$y_{u, v}^{r}=1-\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}}$	$r \in \mathcal{R},(u, v) \in E_{\pi_{1}} \quad$ (3)
$y_{u, v}^{r}=\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}}$	$r \in \mathcal{R},(u, v) \in E_{\pi_{2}} \quad$ (4)
$a_{s}^{r}=1$	$r \in \mathcal{R}$
$a_{v}^{r} \geq a_{u}^{r}+y_{u, v}^{r-1}-1$	$r \in \mathcal{R},(u, v) \in E \quad$ (6)
$a_{v}^{r} \geq a_{u}^{r}+y_{u, v}^{r}-1$	$r \in \mathcal{R},(u, v) \in E \quad$ (7)
$y_{u, v}^{r-1 \vee r} \geq a_{u}^{r}+y_{u, v}^{r-1}-1$	$r \in \mathcal{R},(u, v) \in E \quad$ (8)
$y_{u, v}^{r-1 \vee r} \geq a_{u}^{r}+y_{u, v}^{r}-1$	$r \in \mathcal{R},(u, v) \in E$
$y_{u, v}^{r-1 \vee r} \leq \frac{l_{v}^{r}-l_{u}^{r}-1}{\|V\|-1}+1$	$r \in \mathcal{R},(u, v) \in E \quad(10)$
$\bar{a}_{s}^{r, w}=1$	$r \in \mathcal{R}, w \in W P \quad$ (11)
$\bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r-1}-1$	$\begin{align*} & r \in \mathcal{R}, w \in W P, \\ & (u, v) \in E_{\mathrm{WP}}^{w} \tag{12} \end{align*}$
$\bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r}-1$	$\begin{align*} & r \in \mathcal{R}, w \in W P, \\ & (u, v) \in E_{\overline{W P}}^{w} \tag{13} \end{align*}$
$\bar{a}_{d}^{r, w}=0$	$r \in \mathcal{R}, w \in W P \quad$ (14)

Computing Update Schedules

- RLF can be realized similarly, but is more complex to compute.
- Objective: minimize \#rounds
- Some employed constraints are 'weak'; we propose:
- Decision Variant
- A Flow Extension (F)

Mixed-Integer Program 1: Optimal Rounds (-R-)		
$\min R$		(Obj)
$R \geq r \cdot x_{v}^{r}$	$r \in \mathcal{R}, v \in V$	(1)
$1=\sum_{r \in \mathcal{R}} x_{v}^{r}$	$v \in V$	(2)
$y_{u, v}^{r}=1-\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}}$	$r \in \mathcal{R},(u, v) \in E_{\pi_{1}}$	(3)
$y_{u, v}^{r}=\sum_{r^{\prime} \leq r} x_{u}^{r^{\prime}}$	$r \in \mathcal{R},(u, v) \in E_{\pi_{2}}$	(4)
$a_{s}^{r}=1$	$r \in \mathcal{R}$	(5)
$a_{v}^{r} \geq a_{u}^{r}+y_{u, v}^{r-1}-1$	$r \in \mathcal{R},(u, v) \in E$	
$a_{v}^{r} \geq a_{u}^{r}+y_{u, v}^{r}-1$	$r \in \mathcal{R},(u, v) \in E$	(7)
$y_{u, v}^{r-1 \vee r} \geq a_{u}^{r}+y_{u, v}^{r-1}-1$	$r \in \mathcal{R},(u, v) \in E$	(8)
$y_{u, v}^{r-1 \vee r} \geq a_{u}^{r}+y_{u, v}^{r}-1$	$r \in \mathcal{R},(u, v) \in E$	(9)
$y_{u, v}^{r-1 \vee r} \leq \frac{l_{v}^{r}-l_{u}^{r}-1}{\|V\|-1}+1$	$r \in \mathcal{R},(u, v) \in E$	(10)
$\bar{a}_{s}^{r, w}=1$	$r \in \mathcal{R}, w \in W P$	(11)
$\bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r-1}-1$	$\begin{gather*} r \in \mathcal{R}, w \in W P, \tag{D}\\ (u, v) \in E_{\mathrm{WP}}^{w} \end{gather*}$	(12)
$\bar{a}_{v}^{r, w} \geq \bar{a}_{u}^{r, w}+y_{u, v}^{r}-1$	$\begin{aligned} & r \in \mathcal{R}, w \in W P, \\ & (u, v) \in E_{W \mathrm{WP}}^{w} \end{aligned}$	(13)
$\bar{a}_{d}^{r, w}=0$	$r \in \mathcal{R}, w \in W P$	(14)

Computing Update Schedules

- RLF can be realized similarly, but is more complex to compute.
- Objective: minimize \#rounds
- Some employed constraints are 'weak';
we propose:
- Decision Variant
- A Flow Extension (F)
(D)

Only one update per round.
(F)

Additional s-d flows for each round to improve relaxations.

Computing Update Schedules

- RLF can be realized similarly, but is more complex to compute.
- Objective: minimize \#rounds
- Some employed constraints are 'weak'; we propose:
- Decision Variant
- A Flow Extension (F)

$$
(D) \quad \sum_{v \in V} x_{v}^{r}=1 \quad r \in \mathcal{R}
$$

(F)

$$
\begin{array}{rrr}
\sum_{e \in \delta^{+}(s)} f_{e}^{r}=1 & r \in \mathcal{R} \\
\sum_{e \in \delta^{+}(v)} f_{e}^{r}=\sum_{e \in \delta^{-}(v)} f_{e}^{r} & r \in \mathcal{R}, v \in V \backslash\{s, d\} \\
f_{e}^{r} \leq y_{e}^{r} & r \in \mathcal{R}, e \in E_{\pi_{1}} \cup E_{\pi_{2}} \\
\sum_{e \in \delta^{-}(w)} f_{e}^{r} \geq 1 & r \in \mathcal{R}, w \in W P \\
a_{v}^{r} \geq f_{v}^{r-1} & r \in \mathcal{R} \\
a_{v}^{r} \geq f_{v}^{r} & r \in \mathcal{R} \tag{*}
\end{array}
$$

Practice: Computational Experiments

Computational Setup

- Generate update instances at random by permuting nodes
- 12,600 instances overall
- 10 to 30 switches with 1 to 3 waypoints
- 200 instances for each combination
- (We discard scenarios which can a priori be determined to be infeasible to update, e.g. when waypoints are reordered)

Computational Setup

- Consider 8 different MIP formulations
$S(L F)$ vs. $R(L F)$
$D($ ecision $)$ vs.

F(low Extension) vs. -

- Use Gurobi 6.5.0 to solve the formulations using branch-and-bound
- Terminate computations after 600 seconds

Computational Study: Solvability

Computational Study: Solvability

nearly always optimal solutions

Computational Study: Solvability

-	feasible
$\cdots \cdots$.	optimal $l_{\text {SLF }}$
$\cdots-$	optimal ${ }_{\text {RLF }}$
--	unknown
-	infeasible

Computational Study: Solvability

more provably unupdateable instances

- feasible
..... optimal ${ }_{\text {SLF }}$
-. optimal ${ }_{\text {RLF }}$
- - unknown
- infeasible

Computational Study: Solvability

more provably unupdateable instances more undecided instances

Computational Study: Solvability

more provably unupdateable instances

- feasible
..... optimal ${ }_{\text {SLF }}$
-.- optimal ${ }_{\text {RLF }}$
- - unknown
- infeasible

more undecided instances
 less optimal solutions

Computational Study: Solvability

more provably unupdateable instances

- feasible
..... optimal ${ }_{\text {SLF }}$
..- optimal ${ }_{\text {RLF }}$
- - unknown
- infeasible

June 17th, 2016
more undecided instances
less optimal solutions
still: more than 65\% feasible
SIGMETRICS 2016, Antibes Juan-Les-Pins

Computational Study: RLF vs. SLF

Computational Study: RLF vs. SLF

Computational Study: RLF vs. SLF

50% to 90% within 4-6 rounds

Computational Study: Formulation Performance

Computational Study: Formulation Performance

Runtime Infeasibility Detection

Computational Study: Formulation Performance

Runtime Infeasibility Detection

Combining Decision and Flow extension yields infeasibility certificates approx. 2 orders of magnitude faster.

Computational Study: Formulation Performance

Computational Study: Formulation Performance

Computational Study: Formulation Performance

Related Work

Loop Freedom

- Model and greedy algorithm [Mahajan et al., HotNets '13]
- NP-hardness of optimization, introduction of RLF [Ludwig et al., PODC '15]
- Updating multiple schedules at the same time [Dudycz et al., DSN '16 (to appear)]
- Hardness of computing maximum set of switches to update [Amiri et al., SIROCCO '16 (to appear)]

Waypoint Enforcement

- Introduction of WPE, impossibility and first MIP formulations [Ludwig et al., HotNets '14]

Conclusion

Problem

- Dynamic network updates ensuring LF and WPE

Theory

- LF + WPE may conflict
- LF + WPE is NP-hard to decide
- (other results)

Practice

- MIP Formulations for computing schedules
- Flow and Decision extensions to improve infeasibility detection

Evaluation

- Many scenarios are updateable using few rounds
- MIP formulations have reasonable runtimes

Backup

Theory: Reordering Waypoints is impossible

Reordering Waypoints is impossible

update to

Reordering Waypoints is impossible

$s \quad w p_{1} \quad w p_{2} \quad d$

○…--

Reordering Waypoints is impossible

Reordering Waypoints is impossible

There must exist an update bypassing the first waypoint.

Theory: WPE requires waiting

WPE requires waiting

State
Temporary Forwarding Graph

WPE requires waiting

State
Temporary Forwarding Graph

WPE requires waiting

State
Temporary Forwarding Graph

WPE requires waiting

State

Packets still traversing link will bypass WP

Temporary Forwarding Graph

WPE requires waiting

State
Temporary Forwarding Graph

WPE requires upper bound on link delays, if the relative ordering of nodes changes.

Construction of 3-SAT Reduction: Remaining Connections

