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Network Functions Virtualization (NFV) [Kreutz et al., 2015]
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Introduction Informal Problem Definition

Path Computation and Function Placement Problem (PCFP)
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Introduction Definition of PCFP

Formal Definition of PCFP

Substrate Network
Directed network N = (V ,E )

capacities c : V ∪ E → R≥0

Requests

Acyclic graph Gi = (Xi ,Yi )

mapping restrictions
Ui : Xi ∪ Yi → 2V ∪ 2E

benefit, demand: bi , di ∈ R≥0

start, target: si , ti ∈ Xi
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Substrate Network
Directed network N = (V ,E )

capacities c : V ∪ E → R≥0

Requests

Acyclic graph Gi = (Xi ,Yi )

mapping restrictions
Ui : Xi ∪ Yi → 2V ∪ 2E

benefit, demand: bi , di ∈ R≥0

start, target: si , ti ∈ Xi

Task
Find set I ′ ⊆ I of requests to embed and valid realizations p̃i for i ∈ I ′, s.t.

1 p̃i represents a path from si  ti
2 capacities of substrate nodes and edges is not violated
3 the profit

∑
i∈I ′ bi is maximized.
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Introduction Definition of PCFP

Formal Definition of PCFP

Substrate
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Valid Realizations via Product Networks: pn(N, ri )
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Formal Definition of PCFP

Valid Realizations

Any ŝi -t̂i path in pn(N, ri ) represents a valid realization of request ri .

Valid Realizations via Product Networks: pn(N, ri )
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Introduction Definition of PCFP

Formal Definition of PCFP

Valid Realizations: Example 2
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Approximating PCFP



Approximation Algorithm Flow Approach

PCFP as a Flow Problem
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Approximation Algorithm Flow Approach

PCFP as a Flow Problem

Flow Formulation
Compute unsplittable flows
f̃i : E (pn(N, ri ))→ {0, di}
Flow preservation within
each product network
(except at ŝi and t̂i )
max

∑
i bi · |f̃i |/di

s.t. node and edge
capacities are not violated
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(except at ŝi and t̂i )
max

∑
i bi · |f̃i |/di

s.t. node and edge
capacities are not violated

Flow Solution in Product Networks
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Approximation Algorithm Flow Approach

PCFP as a Flow Problem
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Approximation Algorithm Flow Approach

Approximating PCFP using Randomized Rounding: Idea

Flow Formulation
Compute flows as above, but
relax integrality:
f̃i : E (pn(N, ri ))→ [0, di ]
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Approximation Algorithm Flow Approach

Approximating PCFP using Randomized Rounding: Idea

Flow Formulation
Compute flows as above, but
relax integrality:
f̃i : E (pn(N, ri ))→ [0, di ]

Algorithm
1 Scale capacities by 1/(1 + ε)

2 Compute fractional flows
3 Place request i ∈ I into set

I ′ ⊆ I with probability |f̃i |/di

4 Perform random walks to
obtain p̃i for i ′ ∈ I ′
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Approximation Algorithm Flow Approach

Approximating PCFP using Randomized Rounding: Idea

Algorithm
1 Scale capacities by 1/(1 + ε)

2 Compute fractional flows
3 Place request i ∈ I into set

I ′ ⊆ I with probability |f̃i |/di

4 Perform random walks to
obtain p̃i for i ′ ∈ I ′

Questions
1 What is the expected profit?
2 How badly do we violate

capacities?
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Performing Random Walks



Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Random Walk at node v : Pr [choose e] = f̃i (e)/
∑

e′∈δ+(v) f̃i (e)
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ŝi t̂i

b

d
a

c
b

d
a

c

f̃i(e) = 2f̃i(e) = 1

Pr[e] = 1/3

Pr[e] = 2/3

b

d
a

c
b

d
a

c

b

d
a

c

Matthias Rost (TU Berlin) Approximating PCFP in SDNs Helsinki, July 2016 10



Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Random Walk at node v : Pr [choose e] = f̃i (e)/
∑

e′∈δ+(v) f̃i (e)
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Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Random Walk at node v : Pr [choose e] = f̃i (e)/
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Theorem (by induction, cf. Motwani et al. [1996])

The probability that an edge e ∈ E (pn(N, ri )) will be used equals f̃i (e)/di .
Hence, the expected load on an edge e ∈ E (pn(N, ri )) equals f̃i (e).
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Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Resulting realization p̃i
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Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Other potential realization p̃i
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Approximation Algorithm Random Walks

Approximating PCFP using Randomized Rounding:
Random Walk

Other potential realization p̃i

ŝi t̂i
b

d
a

c
b

d
a

c
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d
a

c

Projected flow fi

b

d
a

cfi(e) = 2 · di

fi(e) = 1 · di

Notation
Let Ei (e) denote all copies of
edge e ∈ E within pn(N, ri ).

Important

fi (e) ≤ |Ei (e)| · di .
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Analysis of Randomized Rounding



Approximation Algorithm Analysis of Edge Violations

Approximating PCFP using Randomized Rounding:
Analysis of Edge Capacities

Let ∆max = maxi∈I Ei (e) and dmax = maxj∈I di

Approach: Fix single substrate edge e ∈ E

Interpret projected flow fi (e) as random variable.
Request i ’s allocation is Xi , fi (e) with Xi ∈ [0,∆max · dmax].

Observe E [Xi ] =
∑

e′∈Ei (e) f̃i (e ′) ≤ µi , c̃(e) ·
∑

e′∈Ei (e) f̃i (e′)∑
j∈I

∑
e′∈Ej (e) f̃j (e′)

.

Let X =
∑

i∈I Xi with E [X ] = µ ,
∑

j∈I µi = c̃(e).
The capacity along edge e ∈ E is violated, if

X ≥ c(e) = (1 + ε) · c̃(e)
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Approximation Algorithm Analysis of Edge Violations

Approximating PCFP using Randomized Rounding:
Analysis of Edge Capacities

Let ∆max = maxi∈I Ei (e) and dmax = maxj∈I di

Approach: Fix single substrate edge e ∈ E

Interpret projected flow fi (e) as random variable.
Request i ’s allocation is Xi , fi (e) with Xi ∈ [0,∆max · dmax].
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Approximation Algorithm Analysis of Edge Violations

Excursion: A Chernoff-Bound

Chernoff
Let {Xi}i denote a sequence of independent random variables attaining
values in [0, 1]. Assume that E [Xi ] ≤ µi . Let X ,

∑
i Xi and µ ,

∑
i µi .

Then, for ε > 0,

Pr [X ≥ (1 + ε) · µ] ≤ e−β(ε)·µ.

Definition of β

The function β : (−1,∞)→ R is defined by β(ε) , (1 + ε) ln(1 + ε)− ε.

Observation

For 0 < ε < 1 we have β(ε) ≥ 2ε2
4.2+ε and hence β(ε) = Θ(ε2).
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Approximating PCFP using Randomized Rounding:
Analysis of Edge Capacities

Approach: Fix single substrate edge e ∈ E

Define Xi ∈ [0, 1]: Xi , fi (e)/(∆max · dmax), with E [Xi ] ≤ µi .
Let X =

∑
i∈I Xi with E [X ] ≤ µ = c̃(e)/(∆max · dmax).

The capacity along edge e ∈ E is violated, if X ≥ (1 + ε) · µ

Application of Chernoff-Bound

Pr

[∑
i∈I

Xi ≥ (1 + ε) · µ
]
≤ e−β(ε)·µ = e−β(ε)·c̃(e)/(∆max·dmax)

Under small demands, i.e. assuming c̃(e)
∆maxdmax

≥ 4.2+ε
ε2
· ln |E |

As β(ε) ≥ 2ε2

4.2 + ε
holds, Pr

[∑
i∈I

Xi ≥ (1 + ε) · µ
]
≤ 1/|E |2 follows.
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Approximating PCFP using Randomized Rounding:
Main Results

Main Theorem

Assume that cmin
∆max·dmax

≥ 4.2+ε
ε2
· (1 + ε) · ln |E | for ε ∈ (0, 1). The rounding

scheme – under scaling capacities by 1/(1 + ε) – yields

Pr [original edge capacity is violated] ≤ 1
|E |

Pr
[
B(alg) <

1− ε
1 + ε

· B(opt∗)
]
≤ e−β(−ε)·B(opt∗)/((1+ε)·bmax·dmax).
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Pr [original edge capacity is violated] ≤ 1
|E |

Pr
[
B(alg) <

1− ε
1 + ε

· B(opt∗)
]
≤ e−β(−ε)·B(opt∗)/((1+ε)·bmax·dmax).

Las Vegas
By repeating the rounding finitely many times, a high quality solution can
be found with high probability.
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Assume that cmin
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ε2
· (1 + ε) · ln |E | for ε ∈ (0, 1). The rounding

scheme – under scaling capacities by 1/(1 + ε) – yields

Pr [original edge capacity is violated] ≤ 1
|E |

Pr
[
B(alg) <

1− ε
1 + ε

· B(opt∗)
]
≤ e−β(−ε)·B(opt∗)/((1+ε)·bmax·dmax).

Corollary
If additionally, bi = 1 holds for all i ∈ I , then with probability
1− O(1/Poly(|E |), the algorithm returns a solution with at least 1− O(ε)
times the optimal benefit with high probability.

Matthias Rost (TU Berlin) Approximating PCFP in SDNs Helsinki, July 2016 17



Conclusion



Conclusion

Conclusion

Summary
PCFP considers the placement of functions and the routing between
these for multiple requests to maximize the profit.
Apply randomized rounding (cf. Raghavan and Tompson [1987]) and
obtain approximation under certain assumptions:

Small demands c̃(e)
∆maxdmax

≥ 4.2+ε
ε2 · ln |E | to not violate capacites

Small demands and unit benefits yield 1−O(ε) approximation.

Contribution: “Rediscovery” of randomized rounding

Consider several (virtual) embedding options for requests (DAGs).
Show applicability of randomized rounding to exert admission control.
Perform concise mathematical analysis.
First non-trivial approximation for embedding of multiple graphs.
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Related Work

Randomized Rounding

VLSI design to minimize width [Raghavan and Tompson, 1987]
Analysis of the approximation for PCFP without requiring assumptions
and generalization to ‘cyclic’ requests [Rost and Schmid, 2016]

Modeling and Embedding Requests

Product Network and Online Approximation [Even et al., 2016]
Heuristics for choosing virtual embedding options and embedding
services [Sahhaf et al., 2015]
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