An Approximation Algorithm for Path Computation and Function Placement in SDNs

> Matthias Rost Technische Universität Berlin

> July 21, SIROCCO 2016

Joint work with Guy Even and Stefan Schmid

Introduction

Substrate Network

- Directed network N = (V, E)
- capacities $c: V \cup E \to \mathbb{R}_{\geq 0}$

Requests

- Acyclic graph $G_i = (X_i, Y_i)$
- mapping restrictions $U_i: X_i \cup Y_i \to 2^V \cup 2^E$
- benefit, demand: $b_i, d_i \in \mathbb{R}_{\geq 0}$

• start, target:
$$s_i, t_i \in X_i$$

$$U_{i}(\mathrm{fw}) = \{a\} \quad U_{i}(\mathrm{gw}) = \{d\}$$

$$\underbrace{S_{i}}_{U_{i}(s_{i})} = \{b\} \quad \underbrace{W}_{W} \quad \underbrace{U_{i}(t_{i})}_{U_{i}(t_{i})} = \{c\}$$

$$U_{i}(\mathrm{x86}) = \{c\}$$

Definition of PCFP

Formal Definition of PCFP

- Directed network N = (V, E)
- capacities $c: V \cup E \rightarrow \mathbb{R}_{\geq 0}$

Substrate Network

- Directed network N = (V, E)
- capacities $c: V \cup E \to \mathbb{R}_{\geq 0}$

Requests

- Acyclic graph $G_i = (X_i, Y_i)$
- mapping restrictions $U_i: X_i \cup Y_i \to 2^V \cup 2^E$
- benefit, demand: $b_i, d_i \in \mathbb{R}_{\geq 0}$
- start, target: $s_i, t_i \in X_i$

Task

Find set $I' \subseteq I$ of requests to embed and valid realizations \tilde{p}_i for $i \in I'$, s.t.

- $\ \, {\bf \tilde{p}}_i \ {\rm represents} \ {\rm a \ path \ from} \ s_i \rightsquigarrow t_i \\ \ \,$
- ② capacities of substrate nodes and edges is not violated
- **3** the profit $\sum_{i \in I'} b_i$ is maximized.

Valid Realizations via Product Networks: $pn(N, r_i)$

Valid Realizations

Any $\hat{s}_i - \hat{t}_i$ path in $pn(N, r_i)$ represents a valid realization of request r_i .

Definition of PCFP

Formal Definition of PCFP

Valid Realizations: Example 1

Valid Realizations in Product Networks $pn(N, r_i)$

Definition of PCFP

Formal Definition of PCFP

Valid Realizations: Example 2

Valid Realizations in Product Network $pn(N, r_i)$

Approximating PCFP

PCFP as a Flow Problem

Flow Approach

PCFP as a Flow Problem

Flow Formulation

- Compute *unsplittable* flows $\tilde{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at ŝ_i and t̂_i)
- max $\sum_i b_i \cdot |\tilde{f}_i|/d_i$
- s.t. node and edge capacities are not violated

Flow Approach

PCFP as a Flow Problem

Flow Formulation

- Compute *unsplittable* flows $\tilde{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at ŝ_i and t̂_i)
- max $\sum_i b_i \cdot |\tilde{f}_i|/d_i$
- s.t. node and edge capacities are not violated

PCFP as a Flow Problem

Flow Formulation

- Compute *unsplittable* flows $\tilde{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at ŝ_i and t̂_i)
- max $\sum_i b_i \cdot |\tilde{f}_i|/d_i$
- s.t. node and edge capacities are not violated

NP-Hardness follows from ... the Unsplittable Flow Problem.

Flow Approach

PCFP as a Flow Problem

NP-Hardness follows from ...

the Unsplittable Flow Problem.

Approximating PCFP using Randomized Rounding: Idea

Matthias Rost (TU Berlin)

Approximating PCFP in SDNs

Approximating PCFP using Randomized Rounding: Idea

Flow Formulation

• Compute flows as above, but relax integrality: $\tilde{f}_i : E(pn(N, r_i)) \rightarrow [0, d_i]$

Algorithm

- Scale capacities by $1/(1+\varepsilon)$
- Ompute fractional flows
- Solution Place request i ∈ I into set I' ⊆ I with probability |f̃_i|/d_i
- Perform random walks to obtain \tilde{p}_i for $i' \in I'$

Approximating PCFP using Randomized Rounding: Idea

Algorithm

- Scale capacities by $1/(1+\varepsilon)$
- Ompute fractional flows
- Solution Solution State S
- Perform random walks to obtain \tilde{p}_i for $i' \in I'$

Questions

- What is the expected profit?
- How badly do we violate capacities?

Performing Random Walks

Matthias Rost (TU Berlin)

Approximating PCFP in SDNs

Matthias Rost (TU Berlin)

Approximating PCFP in SDNs

Random Walk at node v: $Pr[\text{choose } e] = \tilde{f}_i(e) / \sum_{e' \in \delta^+(v)} \tilde{f}_i(e)$

Theorem (by induction, cf. Motwani et al. [1996])

The probability that an edge $e \in E(pn(N, r_i))$ will be used equals $\tilde{f}_i(e)/d_i$. Hence, the expected load on an edge $e \in E(pn(N, r_i))$ equals $\tilde{f}_i(e)$.

Matthias Rost (TU Berlin)

Approximating PCFP in SDNs

Helsinki, July 2016 10

Projected flow f_i

Projected flow f_i $f_i(e) = 1 \cdot d_i$ C $f_i(e) = 2 \cdot d_i$

Notation

Let $E_i(e)$ denote all *copies* of edge $e \in E$ within $pn(N, r_i)$.

Important

$$f_i(e) \leq |E_i(e)| \cdot d_i.$$

Approximating PCFP in SDNs

Analysis of Randomized Rounding

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_i(e)} f_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}.$$

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_j(e)} f_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}$$
.

E [X_i] = ∑_{e'∈Ei(e)} f̃_i(e') follows from the expectation's definition.
 ∑_{i∈I} ∑_{e'∈Ei(e)} f̃_j(e') ≤ č(e) follows from the LP formulation.

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_j(e)} f_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}$$
.

• $\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e')$ follows from the expectation's definition. • $\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e') \le \tilde{c}(e)$ follows from the LP formulation. • $\Leftrightarrow 1 \le \tilde{c}(e) \cdot \frac{1}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}$

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_j(e)} f_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}$$
.

• Let
$$\Delta_{\max} = \max_{i \in I} E_i(e)$$
 and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_i(e)} \tilde{f}_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}.$$

- Let $X = \sum_{i \in I} X_i$ with $\mathbf{E}[X] = \mu \triangleq \sum_{j \in I} \mu_i = \tilde{c}(e)$.
- The capacity along edge $e \in E$ is violated, if

$$X \ge c(e) = (1 + \varepsilon) \cdot \tilde{c}(e)$$

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)$ with $X_i \in [0, \Delta_{\max} \cdot d_{\max}]$.

• Observe
$$\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') \le \mu_i \triangleq \tilde{c}(e) \cdot \frac{\sum_{e' \in E_i(e)} f_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}.$$

• Let
$$X = \sum_{i \in I} X_i$$
 with $\mathsf{E}[X] = \mu \triangleq \sum_{j \in I} \mu_i = \tilde{c}(e)$.

• The capacity along edge $e \in E$ is violated, if

$$X \ge c(e) = (1 + \varepsilon) \cdot \tilde{c}(e)$$

Rescaling by
$$1/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$$

Matthias Rost (TU Berlin)

Approach: Fix single substrate edge $e \in E$

- Interpret projected flow $f_i(e)$ as random variable.
- Request *i*'s allocation is $X_i \triangleq f_i(e)/(\Delta_{\max} \cdot d_{\max})$ with $X_i \in [0, 1]$.
- Observe $\mathsf{E}[X_i] = \sum_{e' \in E_i(e)} \tilde{f}_i(e') / (\Delta_{\max} \cdot d_{\max}) \le \mu_i$ with

•
$$\mu_i \triangleq \frac{\tilde{c}(e)}{(\Delta_{\max} \cdot d_{\max})} \cdot \frac{\sum_{e' \in E_j(e)} I_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \tilde{f}_j(e')}$$

- Let $X = \sum_{i \in I} X_i$ with $\mathbf{E}[X] = \mu \triangleq \sum_{j \in I} \mu_i = \tilde{c}(e)/(\Delta_{\max} \cdot d_{\max}).$
- The capacity along edge $e \in E$ is violated, if

$$X \geq c(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}) = (1 + arepsilon) \cdot \widetilde{c}(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$$

Rescaling by
$$1/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$$

Matthias Rost (TU Berlin)

Approximating PCFP in SDNs

Excursion: A Chernoff-Bound

Chernoff

Let $\{X_i\}_i$ denote a sequence of independent random variables attaining values in [0, 1]. Assume that $\mathbf{E}[X_i] \leq \mu_i$. Let $X \triangleq \sum_i X_i$ and $\mu \triangleq \sum_i \mu_i$. Then, for $\varepsilon > 0$,

$$\Pr\left[X \ge (1+\varepsilon) \cdot \mu\right] \le e^{-\beta(\varepsilon) \cdot \mu}.$$

Excursion: A Chernoff-Bound

Chernoff

Let $\{X_i\}_i$ denote a sequence of independent random variables attaining values in [0, 1]. Assume that $\mathbf{E}[X_i] \leq \mu_i$. Let $X \triangleq \sum_i X_i$ and $\mu \triangleq \sum_i \mu_i$. Then, for $\varepsilon > 0$,

$$\Pr[X \ge (1 + \varepsilon) \cdot \mu] \le e^{-\beta(\varepsilon) \cdot \mu}.$$

Definition of β

The function $\beta: (-1,\infty) \to \mathbb{R}$ is defined by $\beta(\varepsilon) \triangleq (1+\varepsilon)\ln(1+\varepsilon) - \varepsilon$.

Observation

For
$$0 < \varepsilon < 1$$
 we have $\beta(\varepsilon) \geq \frac{2\varepsilon^2}{4.2+\varepsilon}$ and hence $\beta(\varepsilon) = \Theta(\varepsilon^2)$.

Approach: Fix single substrate edge $e \in E$

- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\max} \cdot d_{\max})$, with $\mathsf{E}[X_i] \le \mu_i$.
- Let $X = \sum_{i \in I} X_i$ with $\mathbf{E}[X] \le \mu = \tilde{c}(e)/(\Delta_{\max} \cdot d_{\max})$.
- The capacity along edge $e \in E$ is violated, if $X \geq (1 + arepsilon) \cdot \mu$

Application of Chernoff-Bound

$$\Pr\left[\sum_{i\in I} X_i \ge (1+\varepsilon) \cdot \mu\right] \le e^{-\beta(\varepsilon)\cdot\mu} = e^{-\beta(\varepsilon)\cdot\tilde{c}(e)/(\Delta_{\max}\cdot d_{\max})}$$

Under small demands, i.e. assuming
$$\frac{\tilde{c}(e)}{\Delta_{\max}d_{\max}} \ge \frac{4.2+\varepsilon}{\varepsilon^2} \cdot \ln |E|$$

As $\beta(\varepsilon) \ge \frac{2\varepsilon^2}{4.2+\varepsilon}$ holds, $\Pr\left[\sum_{i\in I} X_i \ge (1+\varepsilon) \cdot \mu\right] \le 1/|E|^2$ follows.

Main Results

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0, 1)$. The rounding scheme – under scaling capacities by $1/(1 + \varepsilon)$ – yields

$$\begin{split} & \operatorname{Pr}\left[\text{original edge capacity is violated}\right] \leq \frac{1}{|E|} \\ & \operatorname{Pr}\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}. \end{split}$$

Matthias Rost (TU Berlin)

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0, 1)$. The rounding scheme – under scaling capacities by $1/(1 + \varepsilon)$ – yields

$$\begin{split} &\mathsf{Pr}\left[\mathsf{original\ edge\ capacity\ is\ violated}\right] \leq \frac{1}{|E|} \\ &\mathsf{Pr}\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}. \end{split}$$

Las Vegas

By repeating the rounding finitely many times, a high quality solution can be found with high probability.

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0, 1)$. The rounding scheme – under scaling capacities by $1/(1 + \varepsilon)$ – yields

$$\begin{split} &\mathsf{Pr}\left[\mathsf{original\ edge\ capacity\ is\ violated}\right] \leq \frac{1}{|E|} \\ &\mathsf{Pr}\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}. \end{split}$$

Corollary

F

If additionally, $b_i = 1$ holds for all $i \in I$, then with probability 1 - O(1/Poly(|E|)), the algorithm returns a solution with at least $1 - O(\varepsilon)$ times the optimal benefit with high probability.

Conclusion

Summary

- PCFP considers the placement of functions and the routing between these for multiple requests to maximize the profit.
- Apply randomized rounding (cf. Raghavan and Tompson [1987]) and obtain approximation under certain assumptions:
 - Small demands $\frac{\tilde{c}(e)}{\Delta_{\max} d_{\max}} \geq \frac{4.2+\varepsilon}{\varepsilon^2} \cdot \ln |E|$ to not violate capacites Small demands and unit benefits yield $1 \mathcal{O}(\varepsilon)$ approximation.

Conclusion

Summary

- PCFP considers the placement of functions and the routing between these for multiple requests to maximize the profit.
- Apply randomized rounding (cf. Raghavan and Tompson [1987]) and obtain approximation under certain assumptions:
 - Small demands $\frac{\tilde{c}(e)}{\Delta_{\max}d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot \ln |E|$ to not violate capacites
 - Small demands and unit benefits yield $1 O(\varepsilon)$ approximation.

Contribution: "Rediscovery" of randomized rounding

- Consider several (virtual) embedding options for requests (DAGs).
- Show applicability of randomized rounding to exert admission control.
- Perform concise mathematical analysis.
- First non-trivial approximation for embedding of multiple graphs.

Related Work

Randomized Rounding

- VLSI design to minimize width [Raghavan and Tompson, 1987]
- Analysis of the approximation for PCFP without requiring assumptions and generalization to 'cyclic' requests [Rost and Schmid, 2016]

Modeling and Embedding Requests

- Product Network and Online Approximation [Even et al., 2016]
- Heuristics for choosing virtual embedding options and embedding services [Sahhaf et al., 2015]

References I

- Guy Even, Moti Medina, and Boaz Patt-Shamir. Competitive path computation and function placement in sdns. *CoRR*, abs/1602.06169, 2016. URL http://arxiv.org/abs/1602.06169.
- D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
 S. Azodolmolky, and S. Uhlig. Software-defined networking: A comprehensive survey. *Proceedings of the IEEE*, 103(1):14–76, 2015. ISSN 0018-9219. doi: 10.1109/JPROC.2014.2371999.
- Rajeev Motwani, Joseph Seffi Naor, and Prabhakar Raghavan. Randomized approximation algorithms in combinatorial optimization. In *Approximation algorithms for NP-hard problems*, pages 447–481. PWS Publishing Co., 1996.
- Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. *Combinatorica*, 7(4):365–374, 1987.

References II

- Matthias Rost and Stefan Schmid. Service chain and virtual network embeddings: Approximations using randomized rounding. *CoRR*, abs/1604.02180, 2016.
- Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, and Piet Demeester. Network service chaining with optimized network function embedding supporting service decompositions. In *Journal Computer Networks (COMNET), Elsevier*, 2015.