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Introduction: Virtual Network Embeddings and Their Complexity

Virtualization: Resource Allocation Opportunities
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Introduction: Virtual Network Embeddings and Their Complexity

Related Work

Theoretical Results: Few
Andersen [2002] Considered 〈VE | - 〉 and
argued for NP-hardness

Amaldi et al. [2016] Considered 〈VE |N 〉
under profit objective, proved NP-hardness
and derived inapproximability result.

Practical Results: Many
Generally More than 100 papers on VNEP
alone, for example . . .

Chowdhury et al. [2009] Developed
algorithms for variant 〈VE |N 〉 and hoped
to obtain approximations.

VNEP is of crucial importance, yet is hardly understood!
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Introduction: Virtual Network Embeddings and Their Complexity

VNEP is of crucial importance, yet is hardly understood!

Our Contributions
1 NP-completeness under restrictions 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉.
2 Relaxed model: NP-completeness of computing approximate embeddings.
3 Restricted input: NP-completeness pertains when restricting request topologies.

Practical Implications (unless P =NP)
There cannot exist a polynomial-time algorithm . . .
1 always yielding a solution to the VNEP under any of the above restrictions,
2 which does not violate capacities or latencies by less than some amount,
3 even when virtual networks are acyclic, planar, and degree-bounded.

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 16



Introduction: Virtual Network Embeddings and Their Complexity

VNEP is of crucial importance, yet is hardly understood!

Our Contributions
1 NP-completeness under restrictions 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉.
2 Relaxed model: NP-completeness of computing approximate embeddings.
3 Restricted input: NP-completeness pertains when restricting request topologies.

Practical Implications (unless P =NP)
There cannot exist a polynomial-time algorithm . . .
1 always yielding a solution to the VNEP under any of the above restrictions,
2 which does not violate capacities or latencies by less than some amount,
3 even when virtual networks are acyclic, planar, and degree-bounded.

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 17



Introduction: Virtual Network Embeddings and Their Complexity

VNEP is of crucial importance, yet is hardly understood!

Our Contributions
1 NP-completeness under restrictions 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉.
2 Relaxed model: NP-completeness of computing approximate embeddings.
3 Restricted input: NP-completeness pertains when restricting request topologies.

Practical Implications (unless P =NP)
There cannot exist a polynomial-time algorithm . . .
1 always yielding a solution to the VNEP under any of the above restrictions,
2 which does not violate capacities or latencies by less than some amount,
3 even when virtual networks are acyclic, planar, and degree-bounded.

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 18



Introduction: Virtual Network Embeddings and Their Complexity

VNEP is of crucial importance, yet is hardly understood!

Our Contributions
1 NP-completeness under restrictions 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉.
2 Relaxed model: NP-completeness of computing approximate embeddings.
3 Restricted input: NP-completeness pertains when restricting request topologies.

Practical Implications (unless P =NP)
There cannot exist a polynomial-time algorithm . . .
1 always yielding a solution to the VNEP under any of the above restrictions,
2 which does not violate capacities or latencies by less than some amount,
3 even when virtual networks are acyclic, planar, and degree-bounded.

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 19



Definition of the Virtual Network Embedding Problem



Definition of the Virtual Network Embedding Problem

Input
Substrate GS = (VS ,ES)
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Virtual Network Embedding Problem (Decision Variant)

Decide whether a feasible embedding of request Gr on substrate GS exists.
Output: Yes / No.
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Reminder: 3-SAT and NP-Completeness

3-SAT-Formula φ

φ =
∧

Ci∈Cφ Ci with Ci ∈ Cφ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula φ over literals Lφ = {x1, x2, x3, x4}
φ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

C1

∧ (x̄1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
C3
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Reminder: 3-SAT and NP-Completeness

Definition of 3-SAT
Decide whether satisfying assignment a : Lφ → {F,T} exists for formula φ. Output: Yes/No.

Theorem: Karp [1972]

3-SAT is NP-complete.

A Decision Problem is NP-complete if . . .
. . . it lies in NP and all other decision problems in NP can be reduced to it.
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Methodology: Proving NP-completeness

Proving NP-completeness of the VNEP
1 VNEP lies in NP (answer can be checked in polynomial time).
2 Reduction from 3-SAT to VNEP.
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3-SAT instance φ VNEP instance (Gr(φ),GS(φ),mapping restrictions)
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Our Reduction Framework

Input: 3-SAT formula φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

Request Gr(φ)

Vr(φ) = {vi | Ci ∈ Cφ} v1 v3v2

Er(φ) = { (vi , vj) | Ci introduces literal used by Cj }

Substrate GS(φ)

one node per clause and
per satisfying assignment
edges as for the requests,
if assignments do not
contradict

x1,x2,x3 :TTT

x1,x2,x3 :TTF

x1,x2,x3 :TFT

x1,x2,x4 : TTT

x1,x2,x4 : TTF

x2,x3,x4 : TTT

x2,x3,x4 : TTF

x2,x3,x4 : TFTx1,x2,x4 : TFT
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Complete Picture
φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 33



Our Reduction Framework

Outline of Reduction Framework

3-SAT instance φ VNEP instance (Gr(φ),GS(φ),mapping restrictions)

φ satisfiable? feasible embedding of Gr(φ) on GS(φ) under restrictions?
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Our Reduction Framework
Base Lemma

Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Visualization of Conditions (1) and (2)

x1,x2,x3 :TTT

x1,x2,x3 :TTF

x1,x2,x3 :TFT

x1,x2,x4 : TTT

x1,x2,x4 : TTF

x2,x3,x4 : TTT

x2,x3,x4 : TTF

x2,x3,x4 : TFTx1,x2,x4 : TFT

v1 v3v2
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Our Reduction Framework
Base Lemma

Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Example φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

Assignment for φ
x1 7→T
x2 7→T
x3 7→F
x4 7→F

Request

v1 v3v2

Embedding satisfying conditions (1) and (2)

x1,x2,x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1,x2,x4 : TTF x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2,x3,x4 : TFF

x1, x2, x4 : TFT

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings IFIP Networking 2018 40



Our Reduction Framework

Base Lemma
Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Application of Base Lemma for VNEP Variant 〈X |Y 〉
VNEP 〈X |Y 〉 is NP-complete if we can enforce all feasible embeddings to satisfy (1) and (2).

3-SAT instance φ VNEP instance (Gr(φ),GS(φ), under mapping restrictions)

φ satisfiable? feasible embedding of Gr(φ) on GS(φ) under restrictions?
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Results

Base Lemma
Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

VNEP 〈 - |NR 〉 is NP-complete.

Node placement enforce (1)

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2

x1, x2, x4 : TFT

Routing restrictions enforce (2)

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2

x1, x2, x4 : TFT
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Results

Base Lemma
Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

VNEP 〈 - |NL 〉 is NP-complete.

Node placement enforce (1)

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2

x1, x2, x4 : TFT

Placement and latency restrictions enforce (2)

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2

x1, x2, x4 : TFT

maximal latency per virtual edge: 1

latency of substrate edges: 1
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Results

NP-Completeness shown for 〈 - |NR 〉 and 〈 - |NL 〉
In the paper: 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉.
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Results

NP-Completeness shown for 〈 - |NR 〉 and 〈 - |NL 〉
In the paper: 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉.

Implications of NP-Completeness
Finding a feasible embedding for the VNEP is NP-complete.
Finding an optimal feasible embedding subject to any objective is NP-hard.
There cannot exist polynomial-time approximation algorithms (unless P =NP).
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NP-Completeness of Computing Approximate Embeddings
Insight: If the problem is too hard, relax the model.

How hard are the VNEP variants when we allow for capacity violations or latency violations?

Allowing for Node Capacity Violations
Relaxation: We allow for substrate node capacity violations by a factor α < 2.

Result: 〈VE | - 〉 and 〈V |R 〉 stay NP-complete and inapproximable (unless P =NP).

Allowing for Latency Violations
Relaxation: We allow for latency violations by a factor γ < 2.

Result: 〈 - |NL 〉 stays NP-complete and inapproximable (unless P =NP).

Allowing for Edge Capacity Violations (proven in our technical report [Rost and Schmid, 2018])
Relaxation: We allow for substrate edge capacity violations by a factor β < 2.

Result: 〈VE | - 〉 and 〈E |N 〉 stay inapproximable for β ∈ O(log n/ log log n), n = |VS |,
unless NP ⊆ BP-TIMEa(

⋃
d≥1 n

d log log n).
aBP-TIME: Bounded-Error Probabilistic Polynomial-Time
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NP-Completeness for Restricted Graph Classes
Insight: If the problem is too hard, restrict the model inputs.

How hard are the VNEP variants when we restrict the graph classes for the substrate and the requests?

Restriction on Directed Acyclic Graphs

By construction, the graphs Gr(φ) and GS(φ) are directed acyclic graphs (DAGs). Accordingly, the
hardness results pertain when restricting the input graphs to be DAGs.

Restriction of Requests to Planar Degree-Bounded Graphs
Restriction: The request graph must be a planar and degree-bounded.

Result: All previous results pertain based on a reduction from a special planar 3-SAT variant.

v1 v3v2

u1 u2 u4u3

planar graph Gφ

u1 u2 u4u3

v1 v3v2

u1 u2 u4u3

v1 v3v2

planar graph Gr(φ)

v1 v3v2
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NP-Completeness for Restricted Graph Classes
Insight: If the problem is too hard, restrict the model inputs.

How hard are the VNEP variants when we restrict the graph classes for the substrate and the requests?

Restriction on Directed Acyclic Graphs

By construction, the graphs Gr(φ) and GS(φ) are directed acyclic graphs (DAGs). Accordingly, the
hardness results pertain when restricting the input graphs to be DAGs.

Restriction of Requests to Planar Degree-Bounded Graphs
Restriction: The request graph must be a planar and degree-bounded.

Result: All previous results pertain based on a reduction from a special planar 3-SAT variant.

v1 v3v2
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Conclusion



Our Contributions
1 NP-completeness under restrictions 〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉.
2 Relaxed model: NP-completeness of computing approximate embeddings.
3 Restricted input: NP-completeness pertains when restricting request topologies.
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3 Restricted input: NP-completeness pertains when restricting request topologies.

Outlook
Further Results Proof NP-completeness for 〈V |RL 〉, consider uniform capacities, . . .
Improvements Improvement of lower bounds for approximate embeddings.

Gained Insights The VNEP is really hard.
Justifies using heuristics and exponential-time algorithms.
Approximations require model relaxations/restrictions.
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Justifies using heuristics and exponential-time algorithms.
Approximations require model relaxations/restrictions.
More about VNEP approximations in my talk tomorrow.

Thank you! Questions?
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