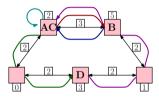
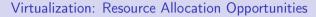
Charting the Complexity Landscape of Virtual Network Embeddings

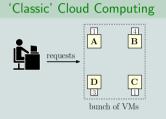


IFIP Networking 2018

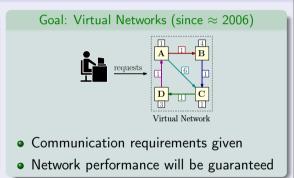
Matthias Rost Technische Universität Berlin, Internet Network Architectures

Stefan Schmid Universität Wien, Communication Technologies





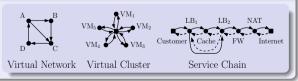
- User requests virtual machines
- No guarantee on network performance



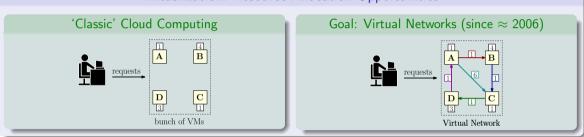
Virtualization: Resource Allocation Opportunities

Novel Service Abstractions

- Virtual Networks overlays (\approx 2006)
- Virtual Clusters batch processing (\approx 2011)
- Service Chain stitch functions (\approx 2013)

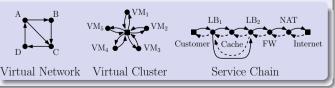


Matthias Rost (TU Berlin)

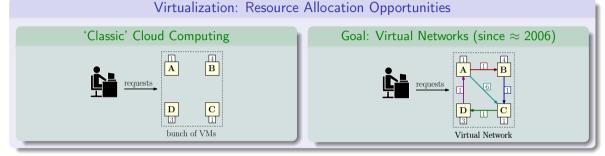


Virtualization: Resource Allocation Opportunities

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem

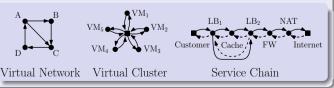


Matthias Rost (TU Berlin)



Novel Service Abstractions

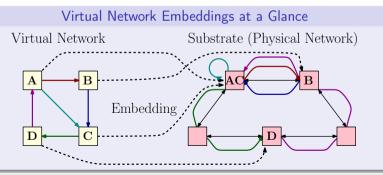
- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



Matthias Rost (TU Berlin)

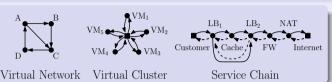
Novel Service Abstractions

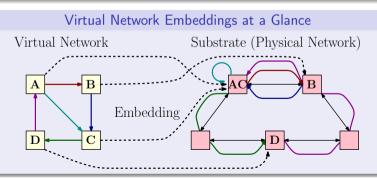
- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem





Embedding Restrictions

Capacity

 \mathbf{V} Node

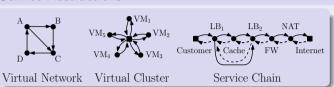
E Edge

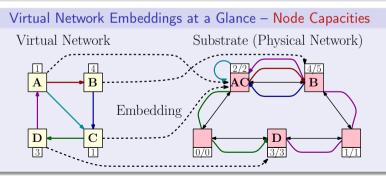
Additional

- ${f N}$ Node placement
- R Routing
- L Latencies

Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



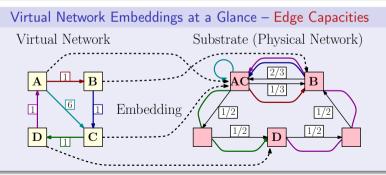


Embedding Restrictions Capacity V Node E Edge Additional

- N Node placement
- R Routing
- L Latencies

Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



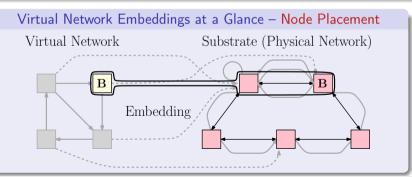
Embedding Restrictions Capacity V Node E Edge Additional N Node placement

- R Routing
- L Latencies

Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



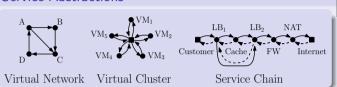


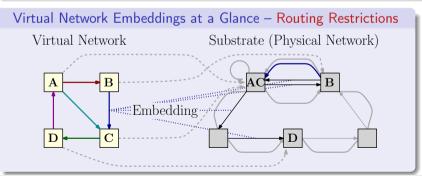
Embedding Restrictions Capacity V Node E Edge Additional N Node placement R Routing

L Latencies

Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



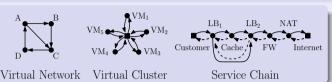


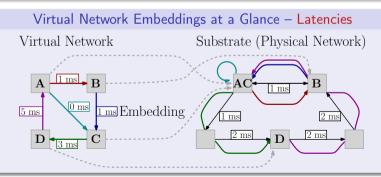
Embedding Restrictions Capacity V Node E Edge Additional

- **N** Node placement
- **R** Routing
- L Latencies

Novel Service Abstractions

- Virtual Network Embedding Problem
- Virtual Clusters Embedding Problem
- Service Chain Embedding Problem



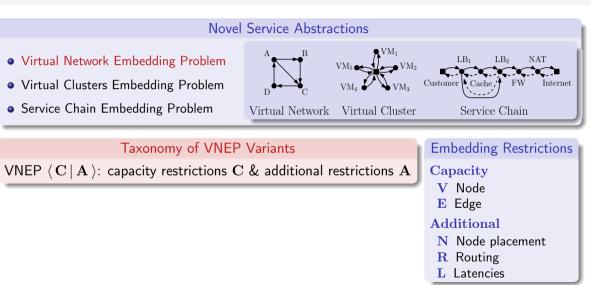


Embedding Restrictions Capacity V Node

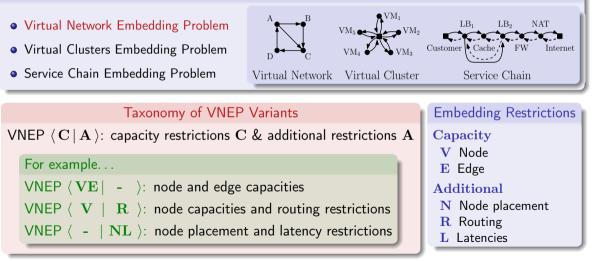
E Edge

Additional

- N Node placement
- R Routing
- L Latencies



Novel Service Abstractions



Matthias Rost (TU Berlin)

Related Work	
Theoretical Results: Few	Practical Results: Many
Andersen [2002] Considered $\langle VE - \rangle$ and argued for \mathcal{NP} -hardness	Generally More than 100 papers on VNEP alone, for example
Amaldi et al. [2016] Considered $\langle \mathbf{VE} \mathbf{N} \rangle$ under <i>profit objective</i> , proved \mathcal{NP} -hardness and derived inapproximability result.	Chowdhury et al. [2009] Developed algorithms for variant $\langle \mathbf{VE} \mathbf{N} \rangle$ and hoped to obtain <i>approximations</i> .

VNEP is of crucial importance, yet is hardly understood!

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

VNEP is of crucial importance, yet is hardly understood!

Our Contributions

 $\textbf{O} \ \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \text{-} \rangle, \ \langle \mathbf{E} | \mathbf{N} \rangle, \ \langle \mathbf{V} | \mathbf{R} \rangle, \ \langle \text{-} | \mathbf{NR} \rangle, \ \langle \text{-} | \mathbf{NL} \rangle.$

Provide the second state of the second stat

Restricted input: NP-completeness pertains when restricting request topologies.

Practical Implications (unless $\mathcal{P} = \mathcal{NP}$)

There cannot exist a polynomial-time algorithm

- always yielding a solution to the VNEP under any of the above restrictions,
- 2 which does not violate capacities or latencies by less than some amount,
- even when virtual networks are acyclic, planar, and degree-bounded.

VNEP is of crucial importance, yet is hardly understood!

Our Contributions

- $O \mathcal{NP}-completeness under restrictions \langle \mathbf{VE} | \rangle, \langle \mathbf{E} | \mathbf{N} \rangle, \langle \mathbf{V} | \mathbf{R} \rangle, \langle | \mathbf{NR} \rangle, \langle | \mathbf{NL} \rangle.$
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.

② Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies

Practical Implications (unless $\mathcal{P} = \mathcal{NP}$)

There cannot exist a polynomial-time algorithm

- always yielding a solution to the VNEP under any of the above restrictions,
- Which does not violate capacities or latencies by less than some amount,

even when virtual networks are acyclic, planar, and degree-bounded.

VNEP is of crucial importance, yet is hardly understood!

Our Contributions

- $\textbf{O} \ \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \text{-} \rangle, \ \langle \mathbf{E} | \mathbf{N} \rangle, \ \langle \mathbf{V} | \mathbf{R} \rangle, \ \langle \text{-} | \mathbf{NR} \rangle, \ \langle \text{-} | \mathbf{NL} \rangle.$
- **Q** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

Practical Implications (unless $\mathcal{P} = \mathcal{NP}$)

There cannot exist a polynomial-time algorithm

- always yielding a solution to the VNEP under any of the above restrictions,
- 2 which does not violate capacities or latencies by less than some amount,
- even when virtual networks are acyclic, planar, and degree-bounded.

VNEP is of crucial importance, yet is hardly understood!

Our Contributions

- $\textbf{O} \ \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \text{-} \rangle, \ \langle \mathbf{E} | \mathbf{N} \rangle, \ \langle \mathbf{V} | \mathbf{R} \rangle, \ \langle \text{-} | \mathbf{NR} \rangle, \ \langle \text{-} | \mathbf{NL} \rangle.$
- **Q** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

Practical Implications (unless $\mathcal{P} = \mathcal{NP}$)

There cannot exist a polynomial-time algorithm

- always yielding a solution to the VNEP under any of the above restrictions,
- 2 which does not violate capacities or latencies by less than some amount,
- even when virtual networks are acyclic, planar, and degree-bounded.

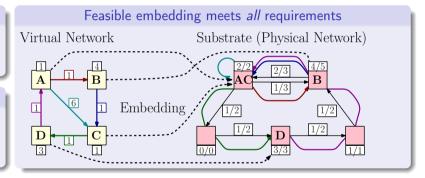
Definition of the Virtual Network Embedding Problem

Definition of the Virtual Network Embedding Problem

Input Substrate $G_S = (V_S, E_S)$ Request $G_r = (V_r, E_r)$ Restrictions ...

Feasible Embedding

A *feasible* embedding is a mapping of G_r to G_S respecting **all** restrictions.

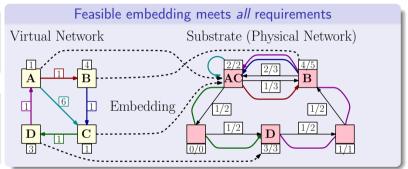


Definition of the Virtual Network Embedding Problem

Input Substrate $G_S = (V_S, E_S)$ Request $G_r = (V_r, E_r)$ Restrictions ...

Feasible Embedding

A *feasible* embedding is a mapping of G_r to G_S respecting **all** restrictions.



Virtual Network Embedding Problem (Decision Variant)

Decide whether a feasible embedding of request G_r on substrate G_S exists. Output: Yes / No. Methodology

3-SAT-Formula ϕ

 $\phi = \bigwedge_{C_i \in C_{\phi}} C_i$ with $C_i \in C_{\phi}$ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula
$$\phi$$
 over literals $\mathcal{L}_{\phi} = \{x_1, x_2, x_3, x_4\}$

$$\phi = \underbrace{(x_1 \lor x_2 \lor x_3)}_{C_1} \land \underbrace{(\bar{x}_1 \lor x_2 \lor x_4)}_{C_2} \land \underbrace{(x_2 \lor \bar{x}_3 \lor x_4)}_{C_3}$$

3-SAT-Formula ϕ

 $\phi = \bigwedge_{C_i \in C_{\phi}} C_i$ with $C_i \in C_{\phi}$ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula
$$\phi$$
 over literals $\mathcal{L}_{\phi} = \{x_1, x_2, x_3, x_4\}$

$$\phi = \underbrace{(x_1 \lor x_2 \lor x_3)}_{\mathcal{C}_1} \land \underbrace{(\bar{x}_1 \lor x_2 \lor x_4)}_{\mathcal{C}_2} \land \underbrace{(x_2 \lor \bar{x}_3 \lor x_4)}_{\mathcal{C}_3}$$

Definition of 3-SAT

Decide whether satisfying assignment $a : \mathcal{L}_{\phi} \to \{F, T\}$ exists for formula ϕ . Output: Yes/No.

3-SAT-Formula ϕ

 $\phi = \bigwedge_{C_i \in C_{\phi}} C_i$ with $C_i \in C_{\phi}$ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula
$$\phi$$
 over literals $\mathcal{L}_{\phi} = \{x_1, x_2, x_3, x_4\}$

$$\phi = \underbrace{(x_1 \lor x_2 \lor x_3)}_{\mathcal{C}_1} \land \underbrace{(\bar{x}_1 \lor x_2 \lor x_4)}_{\mathcal{C}_2} \land \underbrace{(x_2 \lor \bar{x}_3 \lor x_4)}_{\mathcal{C}_3}$$

Definition of 3-SAT

Decide whether satisfying assignment $a : \mathcal{L}_{\phi} \to \{F, T\}$ exists for formula ϕ . Output: Yes/No.

Theorem: Karp [1972]3-SAT is \mathcal{NP} -complete.

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

Definition of 3-SAT

Decide whether satisfying assignment $a : \mathcal{L}_{\phi} \to \{F, T\}$ exists for formula ϕ . Output: Yes/No.

Theorem: Karp [1972]3-SAT is \mathcal{NP} -complete.

A Decision Problem is $\mathcal{NP}\text{-}\mathsf{complete}$ if \ldots

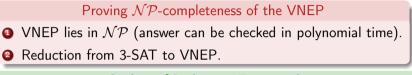
 \ldots it lies in \mathcal{NP} and all other decision problems in \mathcal{NP} can be reduced to it.

Methodology: Proving \mathcal{NP} -completeness

Proving $\mathcal{NP}\text{-}\mathsf{completeness}$ of the VNEP

VNEP lies in NP (answer can be checked in polynomial time).
Reduction from 3-SAT to VNEP.

Methodology: Proving \mathcal{NP} -completeness



Outline of Reduction Framework

3-SAT instance $\phi \longmapsto$ VNEP instance ($G_{r(\phi)}, G_{S(\phi)}, mapping restrictions$)

 ϕ satisfiable? \frown feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Methodology: Proving \mathcal{NP} -completeness

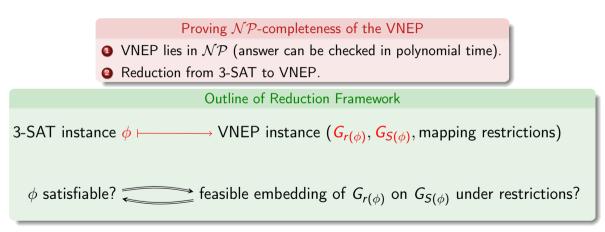
VNEP lies in NP (answer can be checked in polynomial time).
Reduction from 3-SAT to VNEP.

Outline of Reduction Framework

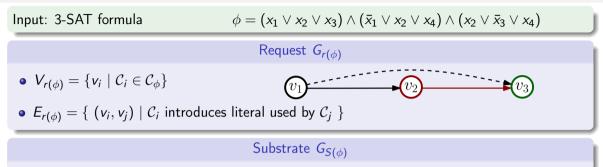
3-SAT instance $\phi \longmapsto$ VNEP instance ($G_{r(\phi)}, G_{S(\phi)}, mapping restrictions$)

 ϕ satisfiable? \frown feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

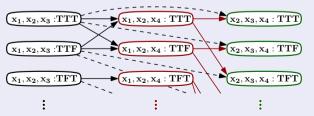
Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

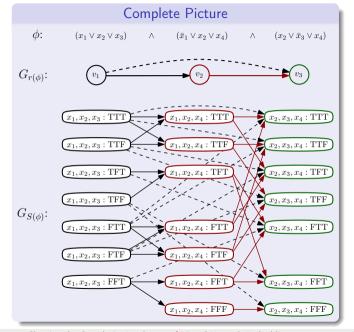


Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

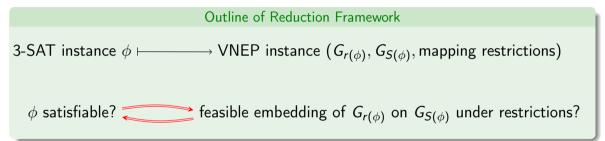


- one node per clause and per satisfying assignment
- edges as for the requests, if assignments do not contradict



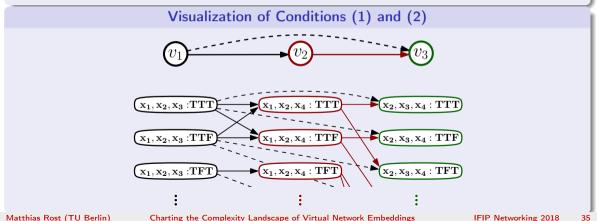


Matthias Rost (TU Berlin)



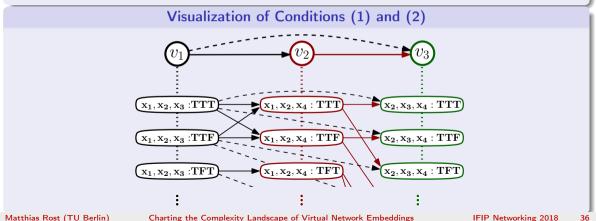
Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



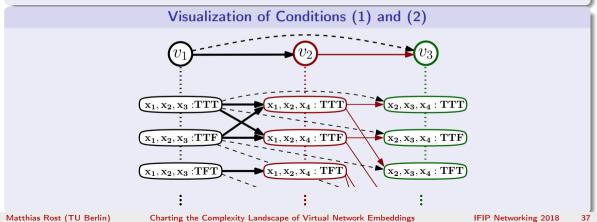
Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



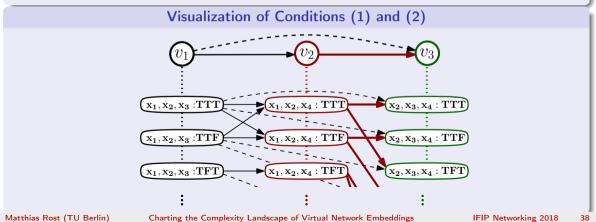
Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



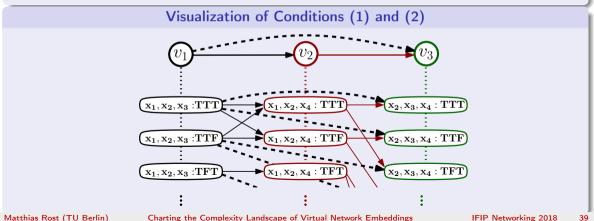
Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



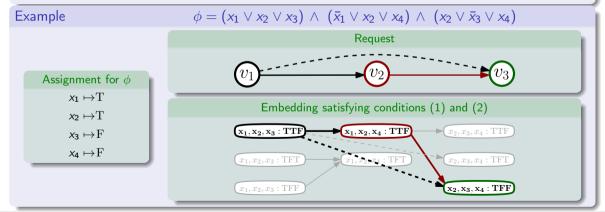
Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



Matthias Rost (TU Berlin)

Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.

Application of Base Lemma for VNEP Variant $\langle\, {\bf X}\,|\, {\bf Y}\,\rangle$

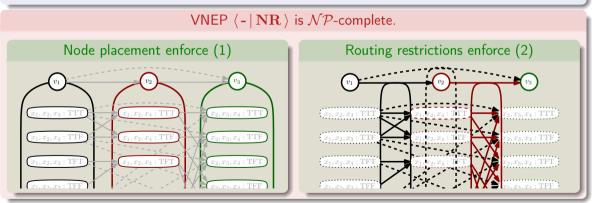
VNEP $\langle \mathbf{X} | \mathbf{Y} \rangle$ is \mathcal{NP} -complete if we can enforce all *feasible* embeddings to satisfy (1) and (2).

3-SAT instance $\phi \longmapsto$ VNEP instance $(G_{r(\phi)}, G_{S(\phi)}, \text{under mapping restrictions})$

ϕ satisfiable? \longrightarrow feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Base Lemma

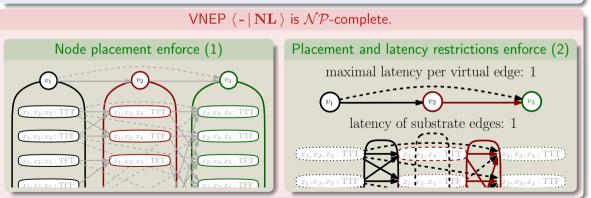
Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



Matthias Rost (TU Berlin)

Base Lemma

Formula ϕ is satisfiable **if and only if** there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t. (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and (2) all virtual edges are mapped on exactly one substrate edge.



Matthias Rost (TU Berlin)

$\begin{array}{l} \mathcal{NP}\text{-}\mathsf{Completeness shown for } \langle - \mid \mathbf{NR} \rangle \text{ and } \langle - \mid \mathbf{NL} \rangle \\ \\ \text{In the paper: } \langle \mathbf{VE} \mid - \rangle, \ \langle \mathbf{E} \mid \mathbf{N} \rangle, \ \langle \mathbf{V} \mid \mathbf{R} \rangle. \end{array}$

 $\begin{aligned} \mathcal{NP}\text{-}\mathsf{Completeness shown for } \langle - | \, \mathbf{NR} \, \rangle \text{ and } \langle - | \, \mathbf{NL} \, \rangle \\ \text{In the paper: } \langle \, \mathbf{VE} \, | \, - \, \rangle, \, \langle \, \mathbf{E} \, | \, \mathbf{N} \, \rangle, \, \langle \, \mathbf{V} \, | \, \mathbf{R} \, \rangle. \end{aligned}$

Implications of \mathcal{NP} -Completeness

- \bullet Finding a feasible embedding for the VNEP is $\mathcal{NP}\text{-complete.}$
- \bullet Finding an optimal feasible embedding subject to any objective is $\mathcal{NP}\text{-hard}.$
- There cannot exist polynomial-time approximation algorithms (unless $\mathcal{P} = \mathcal{NP}$).

\mathcal{NP} -Completeness of Computing Approximate Embeddings

$\mathcal{NP}\text{-}\mathsf{Completeness}$ of Computing Approximate Embeddings

Insight: If the problem is too hard, relax the model.

How hard are the VNEP variants when we allow for capacity violations or latency violations?

Allowing for Node Capacity Violations

Relaxation: We allow for substrate node capacity violations by a factor $\alpha < 2$. Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{V} | \mathbf{R} \rangle$ stay \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Latency Violations

Relaxation: We allow for latency violations by a factor $\gamma < 2$. Result: $\langle - | \mathbf{NL} \rangle$ stays \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{N}$

Allowing for Edge Capacity Violations (proven in our technical report [Rost and Schmid, 2018])

Relaxation: We allow for substrate edge capacity violations by a factor $\beta < 2$.

Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{E} | \mathbf{N} \rangle$ stay inapproximable for $\beta \in \mathcal{O}(\log n / \log \log n)$, $n = |V_S|$, unless $\mathcal{NP} \subseteq \mathcal{BP}$ -TIME^a $(\bigcup_{d \ge 1} n^{d \log \log n})$.

^a*BP-TIME*: Bounded-Error Probabilistic Polynomial-Time

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

\mathcal{NP} -Completeness of Computing Approximate Embeddings

Insight: If the problem is too hard, relax the model.

How hard are the VNEP variants when we allow for capacity violations or latency violations?

Allowing for Node Capacity Violations

Relaxation: We allow for substrate node capacity violations by a factor $\alpha < 2$. Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{V} | \mathbf{R} \rangle$ stay \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Latency Violations

Relaxation: We allow for latency violations by a factor $\gamma < 2$. Result: $\langle - | \mathbf{NL} \rangle$ stays \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{N}$

Allowing for Edge Capacity Violations (proven in our technical report [Rost and Schmid, 2018])

Relaxation: We allow for substrate edge capacity violations by a factor $\beta < 2$.

Result: $\langle \mathbf{VE} | - \rangle$ and $\langle \mathbf{E} | \mathbf{N} \rangle$ stay inapproximable for $\beta \in \mathcal{O}(\log n / \log \log n)$, $n = |V_S|$, unless $\mathcal{NP} \subseteq \mathcal{BP}$ -TIME^a $(\bigcup_{d>1} n^{d \log \log n})$.

^a*BP-TIME*: Bounded-Error Probabilistic Polynomial-Time

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

\mathcal{NP} -Completeness of Computing Approximate Embeddings

Insight: If the problem is too hard, relax the model.

How hard are the VNEP variants when we allow for capacity violations or latency violations?

Allowing for Node Capacity Violations

Relaxation: We allow for substrate node capacity violations by a factor $\alpha < 2$. Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{V} | \mathbf{R} \rangle$ stay \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Latency Violations

Relaxation: We allow for latency violations by a factor $\gamma < 2$. Result: $\langle - | \mathbf{NL} \rangle$ stays \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Edge Capacity Violations (proven in our technical report [Rost and Schmid, 2018])

Relaxation: We allow for substrate edge capacity violations by a factor $\beta < 2$.

Result: $\langle \mathbf{VE} | - \rangle$ and $\langle \mathbf{E} | \mathbf{N} \rangle$ stay inapproximable for $\beta \in \mathcal{O}(\log n / \log \log n)$, $n = |V_S|$, unless $\mathcal{NP} \subseteq \mathcal{BP}$ -TIME^a $(\bigcup_{d>1} n^{d \log \log n})$.

^aBP-TIME: Bounded-Error Probabilistic Polynomial-Time

Matthias Rost (TU Berlin) Charting the Complexity Landscape of Virtual Network Embeddings

$\mathcal{NP}\text{-}\mathsf{Completeness}$ of Computing Approximate Embeddings

Insight: If the problem is too hard, relax the model.

How hard are the VNEP variants when we allow for capacity violations or latency violations?

Allowing for Node Capacity Violations

Relaxation: We allow for substrate node capacity violations by a factor $\alpha < 2$. Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{V} | \mathbf{R} \rangle$ stay \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Latency Violations

Relaxation: We allow for latency violations by a factor $\gamma < 2$.

Result: $\langle - | \mathbf{NL} \rangle$ stays \mathcal{NP} -complete and inapproximable (unless $\mathcal{P} = \mathcal{NP}$).

Allowing for Edge Capacity Violations (proven in our technical report [Rost and Schmid, 2018])

Relaxation: We allow for substrate edge capacity violations by a factor $\beta < 2$.

Result: $\langle \mathbf{VE} | \mathbf{-} \rangle$ and $\langle \mathbf{E} | \mathbf{N} \rangle$ stay inapproximable for $\beta \in \mathcal{O}(\log n / \log \log n)$, $n = |V_S|$, unless $\mathcal{NP} \subseteq \mathcal{BP}$ - $TIME^a(\bigcup_{d \ge 1} n^{d \log \log n})$.

^a*BP-TIME*: Bounded-Error Probabilistic Polynomial-Time

\mathcal{NP} -Completeness when Restricting Graph Classes

$\mathcal{NP}\text{-}\mathsf{Completeness}$ for Restricted Graph Classes

Insight: If the problem is too hard, restrict the model inputs.

How hard are the VNEP variants when we restrict the graph classes for the substrate and the requests?

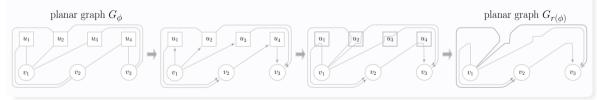
Restriction on Directed Acyclic Graphs

By construction, the graphs $G_{r(\phi)}$ and $G_{S(\phi)}$ are directed acyclic graphs (DAGs). Accordingly, the hardness results pertain when restricting the input graphs to be DAGs.

Restriction of Requests to Planar Degree-Bounded Graphs

Restriction: The request graph must be a planar and degree-bounded.

Result: All previous results pertain based on a reduction from a special planar 3-SAT variant.



Matthias Rost (TU Berlin)

$\mathcal{NP}\text{-}\mathsf{Completeness}$ for Restricted Graph Classes

Insight: If the problem is too hard, restrict the model inputs.

How hard are the VNEP variants when we restrict the graph classes for the substrate and the requests?

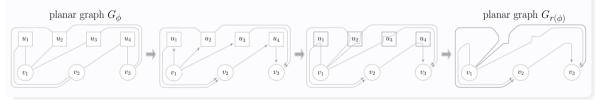
Restriction on Directed Acyclic Graphs

By construction, the graphs $G_{r(\phi)}$ and $G_{S(\phi)}$ are directed acyclic graphs (DAGs). Accordingly, the hardness results pertain when restricting the input graphs to be DAGs.

Restriction of Requests to Planar Degree-Bounded Graphs

Restriction: The request graph must be a planar and degree-bounded.

Result: All previous results pertain based on a reduction from a special planar 3-SAT variant.



Matthias Rost (TU Berlin)

$\mathcal{NP}\text{-}\mathsf{Completeness}$ for Restricted Graph Classes

Insight: If the problem is too hard, restrict the model inputs.

How hard are the VNEP variants when we restrict the graph classes for the substrate and the requests?

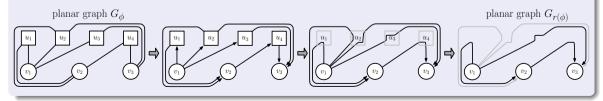
Restriction on Directed Acyclic Graphs

By construction, the graphs $G_{r(\phi)}$ and $G_{S(\phi)}$ are directed acyclic graphs (DAGs). Accordingly, the hardness results pertain when restricting the input graphs to be DAGs.

Restriction of Requests to Planar Degree-Bounded Graphs

Restriction: The request graph must be a planar and degree-bounded.

Result: All previous results pertain based on a reduction from a special planar 3-SAT variant.



- $\mathbf{O} \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \rangle, \langle \mathbf{E} | \mathbf{N} \rangle, \langle \mathbf{V} | \mathbf{R} \rangle, \langle | \mathbf{NR} \rangle, \langle | \mathbf{NL} \rangle.$
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

- **9** \mathcal{NP} -completeness under restrictions $\langle \mathbf{VE} | \rangle$, $\langle \mathbf{E} | \mathbf{N} \rangle$, $\langle \mathbf{V} | \mathbf{R} \rangle$, $\langle | \mathbf{NR} \rangle$, $\langle | \mathbf{NL} \rangle$.
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

Outlook

Further Results Proof \mathcal{NP} -completeness for $\langle \mathbf{V} | \mathbf{RL} \rangle$, consider *uniform* capacities, ...

Improvements Improvement of lower bounds for approximate embeddings.

Gained Insights The VNEP is really hard.

- Justifies using heuristics and exponential-time algorithms.
- Approximations require model relaxations/restrictions.

- **9** \mathcal{NP} -completeness under restrictions $\langle \mathbf{VE} | \rangle$, $\langle \mathbf{E} | \mathbf{N} \rangle$, $\langle \mathbf{V} | \mathbf{R} \rangle$, $\langle | \mathbf{NR} \rangle$, $\langle | \mathbf{NL} \rangle$.
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

Outlook

Further Results Proof \mathcal{NP} -completeness for $\langle \mathbf{V} | \mathbf{RL} \rangle$, consider *uniform* capacities, ... Improvements Improvement of lower bounds for approximate embeddings. Gained Insights The VNEP is really hard.

- Justifies using heuristics and exponential-time algorithms.
- Approximations require model relaxations/restrictions.

- $O \mathcal{NP}-completeness under restrictions \langle \mathbf{VE} | \rangle, \langle \mathbf{E} | \mathbf{N} \rangle, \langle \mathbf{V} | \mathbf{R} \rangle, \langle | \mathbf{NR} \rangle, \langle | \mathbf{NL} \rangle.$
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O** Restricted input: \mathcal{NP} -completeness pertains when restricting request topologies.

Outlook

Further Results Proof \mathcal{NP} -completeness for $\langle \mathbf{V} | \mathbf{RL} \rangle$, consider *uniform* capacities, ... Improvements Improvement of lower bounds for approximate embeddings. Gained Insights The VNEP is really hard.

- Justifies using heuristics and exponential-time algorithms.
- Approximations require model relaxations/restrictions.

- $\mathbf{O} \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \rangle, \langle \mathbf{E} | \mathbf{N} \rangle, \langle \mathbf{V} | \mathbf{R} \rangle, \langle | \mathbf{NR} \rangle, \langle | \mathbf{NL} \rangle.$
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O Restricted input:** \mathcal{NP} -completeness pertains when restricting request topologies.

Outlook

Further Results Proof \mathcal{NP} -completeness for $\langle \mathbf{V} | \mathbf{RL} \rangle$, consider *uniform* capacities, ... Improvements Improvement of lower bounds for approximate embeddings. Gained Insights The VNEP is really hard.

- Justifies using heuristics and exponential-time algorithms.
- Approximations require model relaxations/restrictions. *More about* VNEP *approximations in my talk tomorrow.*

- $\textbf{O} \ \mathcal{NP}\text{-completeness under restrictions } \langle \mathbf{VE} | \text{-} \rangle, \ \langle \mathbf{E} | \mathbf{N} \rangle, \ \langle \mathbf{V} | \mathbf{R} \rangle, \ \langle \text{-} | \mathbf{NR} \rangle, \ \langle \text{-} | \mathbf{NL} \rangle.$
- **2** Relaxed model: *NP*-completeness of computing approximate embeddings.
- **O Restricted input:** \mathcal{NP} -completeness pertains when restricting request topologies.

Outlook

Further Results Proof \mathcal{NP} -completeness for $\langle \mathbf{V} | \mathbf{RL} \rangle$, consider *uniform* capacities, ...

Improvements Improvement of lower bounds for approximate embeddings.

Gained Insights The VNEP is really hard.

- Justifies using heuristics and exponential-time algorithms.
- Approximations require model relaxations/restrictions.

More about VNEP approximations in my talk tomorrow.

Thank you! Questions?

Matthias Rost (TU Berlin)

References I

- Edoardo Amaldi, Stefano Coniglio, Arie M.C.A. Koster, and Martin Tieves. On the computational complexity of the virtual network embedding problem. *Electronic Notes in Discrete Mathematics*, 52:213 220, 2016.
- David G. Andersen. Theoretical approaches to node assignment. [Online]. Available: http://repository.cmu.edu/compsci/86/, December 2002.
- NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. Virtual network embedding with coordinated node and link mapping. In *IEEE INFOCOM*, 2009.
- Richard M Karp. Reducibility among combinatorial problems. In *Complexity of computer computations*, pages 85–103. Springer, 1972.
- Matthias Rost and Stefan Schmid. NP-Completeness and Inapproximability of the Virtual Network Embedding and Its Variants. *CoRR*, abs/1801.03162, 2018. URL http://arxiv.org/abs/1801.03162.