
VirtuCast: Optimal Virtualized In-Network Processing

Matthias Rost
Technische Universität Berlin

March 4th, 2015, NetAlgs Seminar, Tel Aviv University
M.Sc. Thesis Matthias Rost (Advisor: Stefan Schmid)

Optimal Virtualized In-Network Processing with Applications to
Aggregation and Multicast, TU Berlin ’14

Conference Matthias Rost and Stefan Schmid
VirtuCast, Multicast and Aggregation with In-Network Processing,
OPODIS ’13

Tech. Report Matthias Rost and Stefan Schmid
The Constrained Virtual Steiner Arborescence Problem: Formal
Definition, Single-Commodity Integer Programming Formulation
and Computational Evaluation, arXiv ’13

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 1

Virtualized In-Network Processing

Mindset: Service Deployment

Service Deployment is not a Virtual Network Embedding
Customer requests a ‘communication service’, but does not know how
it may be embedded best

customer may not know the provider’s topology
customer may not care

Service provider finds an appropriate virtual topology and embeds it

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 2

Virtualized In-Network Processing

Communication Schemes: Multicast (same old! same old?)

processing = duplication + reroute

sender

receiver

receiver

receiver
processing node

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 3

Virtualized In-Network Processing

Communication Schemes: Multicast (same old! same old?)

processing = duplication + reroute

Figure: Hierarchy of processing nodes

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 3

Virtualized In-Network Processing

Communication Schemes: Aggregation

processing = merge + reroute

sender

receiver

processing node

sender

sender

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 4

Virtualized In-Network Processing

Communication Schemes: Aggregation

processing = merge + reroute

Figure: Hierarchy of processing nodes

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 4

Virtualized In-Network Processing

Problem Statement

Enablers: Network Virtualization, e.g. SDN + NFV

(Unsplittable) routes can be established arbitrarily
Network functions can be placed on specific nodes

High-Level Questions

How to compute virtual aggregation / multicasting trees?
Where to place in-network processing functionality?
How to trade-off between traffic and processing?

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 5

Virtualized In-Network Processing Introductory Example

Introductory Example

Aggregation scenario
grid graph: 14 senders, one receiver

Virtualized links
data can be routed arbitrarily

receiver sender

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 6

Virtualized In-Network Processing Introductory Example

Without in-network processing: Unicast

Solution Method
minimal cost flow

Solution uses
41 edges
0 processing nodes

receiver sender

Figure: Unicast solution

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 7

Virtualized In-Network Processing Introductory Example

With in-network processing at all nodes

Solution Method
Steiner arborescence

Solution uses
16 edges
9 processing nodes

receiver

processing

sender

sender with
processingnode

Figure: Aggregation tree

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 8

Virtualized In-Network Processing Introductory Example

How to Trade-off?

vs.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 9

Virtualized In-Network Processing Introductory Example

What we aim for

Solution uses
26 edges
2 processing
nodes

receiver

processing

sender

node

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 10

Virtualized In-Network Processing Introductory Example

Solution Structure

Figure: Virtual Arborescence Figure: underlying routes

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 11

Virtualized In-Network Processing Introductory Example

New Model:
Constrained Virtual Steiner Arborescence Problem

Definition: CVSAP
Find a Virtual Arborescence connecting senders to the single receiver, s.t.

1 bandwidth of substrate is not exceeded,
2 inner nodes are capable of processing flow,
3 the processing nodes’ capacities are not exceeded,

minimizing the joint cost for bandwidth allocations and function placement.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 12

Applications

Virtualized In-Network Processing Applications

Service Replication

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Service Replication

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Service Replication

What if backend links are congested?

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Service Replication

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Service Replication

What if only ‘3’ users can be handled?

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Service Replication

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 14

Virtualized In-Network Processing Applications

Applications

Network Application Technology, e.g.

m
ul

ti
ca

st ISP
service replication / cache
placement [10, 11]

middleboxes / NFV
+ SDN

backbone optical multicast [6] ROADM + SDH

all application-level multicast [15] different

ag
gr

eg
at

io
n

sensor
network

value & message aggrega-
tion [5, 8]

source routing

ISP
network analytics: Gigascope
[3]

middleboxes / NFV
+ SDN

data center
big data / map-reduce: Cam-
doop [2]

SDN

edge capacities processing node locations processing node capacities

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 15

Virtualized In-Network Processing Applications

Applications: UNIFY / Network Analytics

EU FP7 IP UNIFY [4]

Considers service chaining in the wide-area
network, connecting e.g. customers at home
to (possibly multiple) datacenter
Business perspective: SLAs must be
guaranteed strictly, otherwise fines

KPIs need to be monitored constantly
Different measurements need to be
collected the whole time

Information Distribution
Use multicast variant of CVSAP to distribute measurements.
Placing processing nodes everywhere should be avoided due to the
synchronization overhead (latencies).

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 16

Virtualized In-Network Processing Applications

Applications: UNIFY / Network Analytics

EU FP7 IP UNIFY [4]

Considers service chaining in the wide-area
network, connecting e.g. customers at home
to (possibly multiple) datacenter
Business perspective: SLAs must be
guaranteed strictly, otherwise fines

KPIs need to be monitored constantly
Different measurements need to be
collected the whole time

Information Aggregation

Use aggregation variant of CVSAP to compute (subfunctions) of the
KPIs on-the-fly
Processing nodes may offer multicast functionality (see above) as well.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 16

Solution Approaches

Solution Approaches Outline

Solution Approaches

Wishful thinking: there exists a
• polynomial time algorithm
• solving CVSAP to optimality
• considering all constraints.

Theorem: Inapproximability of CVSAP
Finding a feasible solution is NP-complete!

Approximations
• polynomial
• quality guarantee
• weaker models

Exact Algorithms
• non-polynomial
• optimality
• full model

Heuristics
• polynomial
• no solution guarantee
• full model

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 18

Solution Approaches Outline

Solution Approaches

Wishful thinking: there exists a
• polynomial time algorithm
• solving CVSAP to optimality
• considering all constraints.

Theorem: Inapproximability of CVSAP
Finding a feasible solution is NP-complete!

Approximations
• polynomial
• quality guarantee
• weaker models

Exact Algorithms
• non-polynomial
• optimality
• full model

Heuristics
• polynomial
• no solution guarantee
• full model

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 18

Solution Approaches Outline

Solution Approaches

Wishful thinking: there exists a
• polynomial time algorithm
• solving CVSAP to optimality
• considering all constraints.

Theorem: Inapproximability of CVSAP
Finding a feasible solution is NP-complete!

Approximations
• polynomial
• quality guarantee
• weaker models

Exact Algorithms
• non-polynomial
• optimality
• full model

Heuristics
• polynomial
• no solution guarantee
• full model

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 18

Solution Approaches Outline

Comprehensive algorithmic study

Algorithms

Approximations
• NVSTP
• VSTP
• VSAP

Exact Algorithms
• multi-commodity flow
• single-commodity flow
→ VirtuCast

LP-based Heuristics
• FlowDecoRound
• MultipleShots
• GreedyDiving

Combinatorial
Heuristic
• GreedySelect

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 19

Inapproximability

Solution Approaches Inapproximability

Inapproximability

Reduction from Set Cover: Does a set cover of size X exist?

1

2

3

4

5

capacity: X

1

2

3

4

5

Theorem:
Finding a feasible solution is already NP-complete.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 21

Approximation Algorithms for Variants

Solution Approaches Approximation Algorithms

Variants

Directed Undirected

edge and node capacities CVSAP CVSTP

node capacities NVSAP NVSTP

no capacities VSAP VSTP

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 23

Solution Approaches Approximation Algorithms

Approximation via related problems

Results

Directed Undirected

both capacities CVSAP CVSTP

node capacities NVSAP NVSTP DNSTP

no capacities SAP VSAP VSTP CFLP

O(log, log)

O(log) O(8)

Bottom Line
Better understanding of how to incorporate virtualized links.
Obtained lower bounds and approximations

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 24

Exact Algorithms for CVSAP

Solution Approaches Exact Algorithms

Overview

Why exact algorithms matter
allow trading-off runtime with solution quality
baseline for heuristics

Choice: Integer Programming (IP)

successfully employed for solving related problems (STP, CFLP, . . .)
generates lower bounds on-the-fly

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 26

Solution Approaches Exact Algorithms

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP
explicitly represent virtual
arborescence
necessitates independent
construction of paths for all
processing nodes

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 27

Solution Approaches Exact Algorithms

Multi-Commodity Flow (MCF) Integer Program

First approach: MCF IP
explicitly represent virtual
arborescence
necessitates independent
construction of paths for all
processing nodes

Does not scale well
number of binary variables:
#processing nodes · #edges

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 27

Solution Approaches Exact Algorithms

Integer Program 1: A-CVSAP-MCF

minimize CMCF =
∑
e∈EG

ce(fe +
∑
s∈S

fs,e) (MCF-OBJ)

+
∑
s∈S

cs · xs

subject to f T (δ+
EMCF

(v)) = f T (δ−EMCF
(v)) + |{v} ∩ T | ∀ v ∈ VG (MCF-1)

f s(δ+
ES

MCF
(v)) = f s(δ−ES

MCF
(v)) + δs,v · xs ∀ s ∈ S , v ∈ VG (MCF-2)

f T
e +

∑
s∈S

f s
e ≤


usxs , e = (s, o−), s ∈ S
ur , e = (r , o−)

ue , e ∈ EG

∀e ∈ EMCF (MCF-3)

−|S |(1− f s
s̄,o−) ≤ps − ps̄ − 1 ∀ s, s̄ ∈ S (MCF-4)

f s
(s̄,o−) ≤ xs̄ ∀ s ∈ S , s̄ ∈ S − s (MCF-5?)

f s
s,o− =0 ∀ s ∈ S (MCF-6?)

f s
s̄,o− + f s̄

s,o− ≤1 ∀ s, s̄ ∈ S (MCF-7?)

xs ∈ {0, 1} ∀ s ∈ S (MCF-8)

f T
e ∈ Z≥0 ∀ e ∈ EMCF (MCF-9)
f s
e ∈ {0, 1} ∀ s ∈ S , e ∈ EMCF (MCF-10)
p ∈ [0, |S | − 1] ∀ s ∈ S (MCF-11)

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 28

Solution Approaches Exact Algorithms

Single-Commodity Flow IP

Single-commodity flow formulation
computes aggregated flow on edges independently of the origin
does not represent virtual arborescence

Figure: Single-commodity

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 29

Solution Approaches Exact Algorithms

Multi- vs Single-Commodity

Example: 6000 edges and 200 Steiner sites
Single-commodity: 6000 integer variables
Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity Figure: Multi-commodity

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 30

VirtuCast Algorithm

Solution Approaches Exact Algorithms

VirtuCast Algorithm

Outline of VirtuCast
1 Solve single-commodity flow IP formulation.
2 Decompose IP solution into Virtual Arborescence.

How to
decompose?

(a) IP solution

→

(b) Virtual Arborescence

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 32

IP Formulation

Solution Approaches Exact Algorithms

Extended Graph

Additional nodes

source o+

sinks o−r and o−S

Additional edges

o−r

o−S

o+

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 34

Solution Approaches Exact Algorithms

IP Formulation I

minimize CIP(x , f) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+
Eext

(v)) = f (δ−Eext
(v)) ∀ v ∈ VG

f (δ+
ER

ext
(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe =1 ∀ e = (o+, t) ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 35

Solution Approaches Exact Algorithms

Connectivity Inequalities

STP Excursion [7]

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+
ER

ext
(W)) ≥ xs

‘From each activated Steiner site, there exists a path towards o−r .’

Exponentially many constraints, but . . .
can be separated in polynomial time.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 36

Solution Approaches Exact Algorithms

Connectivity Inequalities

STP Excursion [7]

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+
ER

ext
(W)) ≥ xs

‘From each activated Steiner site, there exists a path towards o−r .’

Exponentially many constraints, but . . .
can be separated in polynomial time.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 36

Solution Approaches Exact Algorithms

Complete Formulation

minimize CIP(x , f) =
∑
e∈EG

ce fe+
∑
s∈S

csxs

subject to f (δ+
Eext

(v)) = f (δ−Eext
(v)) ∀ v ∈ VG

f (δ+
ER

ext
(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

fe ≤usxs ∀ e = (s, o−S) ∈ ES−
ext

f(r ,o−r) ≤ur

fe ≤ue ∀ e ∈ EG

fe =1 ∀ e ∈ ET+

ext

fe = xs ∀ e = (o+, s) ∈ ES+

ext

xs ∈{0, 1} ∀ s ∈ S
fe ∈Z≥0 ∀ e ∈ Eext

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 37

Solution Approaches Exact Algorithms

Decomposing flow is non-trivial (5 pages proof)!

Flow solution . . .
contains cycles and
represents arbitrary hierarchies.

Main Results
decomposition is always feasible
constructive proof:
polynomial time algorithm

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 38

Solution Approaches Exact Algorithms

Outline of Decomposition Algorithm

Iterate
1 select a terminal t
2 construct path P from t towards o−r or o−S
3 remove one unit of flow along P
4 connect t to the second last node of P and remove t

After each iteration
Problem size reduced by one.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 39

Solution Approaches Exact Algorithms

Outline of Decomposition Algorithm

Reduced problem must be feasible
Removing flow must not invalidate any connectivity inequalities.

Principle: Repair & Redirect
decrease flow on path edge by edge
if connectivity inequalities are violated

repair increment flow on edge to remain feasible
redirect choose another path from the current node

Theorem
Given an optimal solution, the Decompososition Algorithm computes a
Virtual Arborescence in time O

(
|VG |2 · |EG | · (|VG |+ |EG |)

)
.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 40

Solution Approaches Decomposition Example

Example

Scenario

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 41

Solution Approaches Decomposition Example

Example

Extended Graph

o−r

o−S o+

receiver

Steiner

sender

site

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 41

Solution Approaches Decomposition Example

Example

Solution

o−r

o−S o+

1 1 1

11

1

1 1

1

1

1

3

receiver

Steiner

sender

site

activated

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 41

Solution Approaches Decomposition Example

Decomposition Example I

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 42

Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 42

Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 42

Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 42

Solution Approaches Decomposition Example

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 42

Solution Approaches Decomposition Example

Redirecting Flow

o−r

o−S o+

t1

vr

s

W

Violation of Connectivity Inequality

f (δ+
ER

ext
(W)) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 43

Solution Approaches Decomposition Example

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 44

Solution Approaches Decomposition Example

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 44

Solution Approaches Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
,v
,s
〉

t1

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Solution Approaches Decomposition Example

Decomposition Example II

Final Solution

s

〈t1 , v, s〉
t1

t2

t3

〈t2, s〉

〈t3,
s〉

r
〈s, v, r〉

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 45

Combinatorial Heuristic: GreedySelect

Solution Approaches Combinatorial Heuristic: GreedySelect

Combinatorial Heuristics

On Chickens and Eggs
How and when to place processing nodes?
How and when to reserve bandwidth for routes?
How to react to infeasibilities?

Our Approach
Place processing functionality and reserve bandwidth jointly.
Try to avoid infeasibilities by proactive routing decisions.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 47

Solution Approaches Combinatorial Heuristic: GreedySelect

GreedySelect Heuristic

Greedily either . . .
connect a single node to the connected component of the receiver or
connect multiple nodes to an inactive processing node

minimizing the averaged discounted cost per connected
node.

Selecting processing node + terminals + paths : O(|V | · |E |+ |V |2 log |V |)
compute Ps̄ , (s̄ ∈ S̄ ,T ′ ⊆ T̄ ,PT ′ = {Pt,s̄ |t ∈ T ′}),

such that Pt,s̄ connects t to s̄,
us̄(e)− |PT ′ [e]| ≥ 0 for all e ∈ EG ,

2 ≤ |T ′| ≤ ur ,S(s̄)

minimizing cs̄,T ′ ,

(∑
t∈T ′

(cE (Pt,s̄)− cE (Pt,R)) + cE (Ps̄,R) + cS(s̄)

)
/|T ′|

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 48

LP-based Heuristics

Solution Approaches LP-based Heuristics

Overview

Linear Relaxations
The linear relaxation of an IP is obtained by relaxing the integrality
constraints of the variables, thereby obtaining a Linear Program (LP).
Solutions to linear relaxations are readily availabe when using
branch-and-bound to solve an IP.
May provide useful information to guide the construction of a solution.

Usage
LP-based heuristics are employed within the VirtuCast solver to
improve the bounding process.
Yield polynomial time heuristics when used together with the root
relaxation.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 50

Solution Approaches LP-based Heuristics

FlowDecoRound Heuristic

• computes a flow decomposition and
connects nodes randomly according to
the decomposition
• processing nodes are activated if

another node node connects to it,
must be connected itself
• failsafe: shortest paths

Algorithm 1: FlowDecoRound
Input : Network G = (VG ,EG , cE , uE), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set Ŝ , ∅ and T̂ , ∅ and U = T
2 set V̂T , {r}, ÊT , ∅ and π̂ : ÊT → PG

3 set u(e) ,


uE (e) , if e ∈ EG

ur (r) , if e = (r , o−r)

uS(s) , if e = (s, o−S) ∈ ES−
ext

1 , else

for all e ∈ Eext

4 while U 6= ∅ do

5 choose t ∈ U uniformly at random and set U ← U − t

6 set Γt , MinCostFlow
(
Gext, f̂ , f̂ (o+, t), t, {o−S , o−r }

)
7 set f̂ ← f̂ − ∑

(P,f)∈Γt ,e∈P
f

8 set Γt ← Γt \ {(P, f) ∈ Γt |∃e ∈ P.u(e) = 0}
9 set Γt ← Γt \ {(P, f) ∈ Γt |(V̂T + t, ÊT + (t,P|P|−1)) is not acyclic }

10 if Γt 6= ∅ then
11 choose (P, f) ∈ Γt with probability f /

(∑
(Pj ,fj)∈Γt

fj
)

12 if P|P|−1 /∈ V̂T then
13 set U ← U + P|P|−1 and V̂T ← V̂T + P|P|−1
14 set V̂T ← V̂T + t and ÊT ← ÊT + (t,P|P|−1)

and π̂(t,P|P|−1) , P
15 set u(e)← u(e)− 1 for all e ∈ P

16 set u(e)← 0 for all e = (s, o−S) ∈ ES−
ext with s ∈ S ∧ s /∈ V̂T

17 set T̄ , (T \ V̂T) ∪ ({s ∈ S ∩ V̂T |δ+

ÊT
(s) = 0})

18 for t ∈ T̄ do

19 choose P ← ShortestPath
(
Gu
ext, cE , t, {o−S , o−r }

)
such that (V̂T + t, ÊT + (t,P|P|−1)) is acyclic

20 if P = ∅ then
21 return null

22 set V̂T ← V̂T + t and ÊT ← ÊT + (t,P|P|−1) and π̂(t,P|P|−1) , P
23 set u(e)← u(e)− 1 for all e ∈ P

24 for e ∈ ÊT do
25 set P , π̂(e)
26 set π̂(e)← 〈P1, . . . ,P|P|−1〉
27 set T̂G , Virtual Arborescence (V̂T , ÊT , r , π̂)

28 return PruneSteinerNodes(T̂G)

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 51

Solution Approaches LP-based Heuristics

Intermezzo: VCPrimConnect

Important Observation
If all placed processing nodes are already
connected, all senders can be assigned
optimally using a minimum cost flow.

Outline
1 connect all opened processing nodes

in tree via a adaption of Prim’s
MST algorithm

2 assign all sending nodes using
min-cost flow

Algorithm 2: VCPrimConnect
Input : Network G = (VG ,EG , cE , uE), Request

RG = (r , S ,T , ur , cS , uS),
Partial Virtual Arborescence T P

G = (V P
T ,E

P
T , r , π

P)
Output: Feasible Virtual Arborescence TG = (VT ,ET , r , π) or null

1 set U , {v |v ∈ V P
T \ {r}, δ+

EP
T

(v) = 0}
2 set S̄ , U ∩ S
3 set VT , V P

T , ET , EP
T and π(u, v) = πP(u, v) for all (u, v) ∈ ET

4 set u(e) , uE (e)− |π(ET)[e]| for all e ∈ EG
5 while S̄ 6= ∅ do

6 compute R ← {r ′|r ∈ {r} ∪ (VT ∩ S), r ′ reaches r in TG , δ−ET (r ′) <
ur ,S(r ′)}

7 compute P = MinAllShortestPath(Gu, cE , S̄ ,R)

8 if P = null then
9 return null

10 end
11 set S̄ ← S̄ − P1

12 set ET ← ET + (P1,P|P|) and π(P1,P|P|) , P
13 set u(e)← u(e)− 1 for all e ∈ P
14 end

15 set T̄ , U ∩ T
16 set uV (r ′) , ur ,S(r ′)− δ−ET (r ′) for all r ′ ∈ {r} ∪ (VT ∩ S)

17 compute Γ = {P t̄} ← MinCostAssignment(G , cE , u, uV , T̄ , {r}∪VT ∩S)

18 if Γ = ∅ then
19 return null
20 end
21 set ET ← ET + (t,Pt

|Pt |) and π(t,Pt
|Pt |) , Pt for all Pt ∈ Γ

22 return TG , (VT ,ET , r , π)

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 52

Solution Approaches LP-based Heuristics

MultipleShots

• treats node variables as probabilities
and iteratively places processing
functionality accordingly
• tries to generate a feasible solution in

each round via VCPrimConnect

Algorithm 3: MultipleShots
Input : Network G = (VG ,EG , cE , uE), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
2 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})
3 set Ṡ0 , bSc∪ and Ṡ1 , dSe
4 disableGlobalPrimalBound()

5 repeat
6 (x̂ , f̂)← solveSeparateSolve()
7 if infeasibleLP() return null
8 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
9 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})

10 set Ṡ0 ← Ṡ0 ∪ bSc and Ṡ1 ← Ṡ1 ∪ dSe
11 set Ŝ , S \ (Ṡ0 ∪ Ṡ1)

12 if Ŝ 6= ∅ then

13 repeat
14 set S1 , Ŝ
15 remove s from S1 with probability 1− x̂s for all s ∈ S1
16 if S1 = ∅ and |S \ (Ṡ0 ∪ Ṡ1)| < 10 then

17 set S1 ← S \ (Ṡ0 ∪ Ṡ1)

18 until S1 6= ∅
19 addConstraintsLocally({xs = 1|s ∈ S1})
20 set Ṡ1 ← Ṡ1 ∪ S1

21 T̂ P
G , (V̂ P

T , Ê
P
T , r , ∅) where V̂ P

T , {r} ∪ T ∪ Ṡ1 and ÊT , ∅
22 set T̂G ,VCPrimConnect(G ,RG , T̂ P

G)
23 if T̂G 6= null then
24 return PruneSteinerNodes(T̂G)
25 until Ṡ0 ∪ Ṡ1 = S
26 return null

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 53

Solution Approaches LP-based Heuristics

GreedyDiving

• aims at generating a feasible IP
solution
• iteratively bounds at least a single

variable from below, first fixing node
variables
• complex failsafe:

PartialDecompose + VCPrimConnect

Algorithm 4: GreedyDiving
Input : Network G = (VG ,EG , cE , uE), Request

RG = (r , S ,T , ur , cS , uS),
LP relaxation solution (x̂ , f̂) ∈ FLP to ??

Output: A Feasible Virtual Arborescence T̂G or null

1 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
2 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})
3 set Ṡ , bSc ∪ dSe and Ė , ∅
4 do

5 (x̂ ′, f̂ ′)← solveSeparateSolve()

6 if infeasibleLP() and Ṡ = S then

7 break

8 else if infeasibleLP() or objectiveLimit() then

9 return null

10 set (x̂ , f̂)← (x̂ ′, f̂ ′)
11 if Ṡ 6= S then

12 set bSc , {s ∈ S |x̂s ≤ 0.01} and dSe , {s ∈ S |x̂s ≥ 0.99}
13 addConstraintsLocally({xs = 0|s ∈ bSc} ∪ {xs = 1|s ∈ dSe})
14 set Ṡ ← Ṡ ∪ bSc ∪ dSe
15 set Ŝ , S \ Ṡ
16 if Ŝ 6= ∅ then

17 choose ŝ ∈ Ŝ with cS(ŝ)/x̂ŝ minimal
18 addConstraintsLocally({xŝ = 1})
19 set Ṡ ← Ṡ + ŝ

20 else if Ė 6= Eext then

21 set bEc , {e ∈ Eext| |f̂e − bf̂ec| ≤ 0.001},
dEe , {e ∈ Eext| |f̂e − df̂ee| ≤ 0.001}

22 addConstraintsLocally({fe = bf̂ec|e ∈ bEc} ∪ {fe = df̂ee|e ∈
dEe}

23 set Ė ← Ė ∪ bEc ∪ dEe
24 set Ê , Eext \ Ė
25 if Ê 6= ∅ then

26 choose ê ∈ Ê with df̂êe − f̂ê minimal
27 addConstraintsLocally({f̂ê ≥ df̂êe})
28 set Ė ← Ė + ê

29 else
30 break

31 set f̂e ← bf̂ec for all e ∈ Eext \ Ė
32 set T̂ P

G ← PartialDecompose (G ,RG , (x̂ , f̂))
33 return VCPrimConnect(G ,RG , T̂ P

G)

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 54

Computational Evaluation

Computational Evaluation Setup

Topologies

3D torus Fat tree

An ISP topology generated by IGen with 2400 nodes.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 56

Computational Evaluation Setup

Instances

Generation Parameters
five graph sizes I-V
15 instances per graph size: different Steiner costs, different edge
capacities

Nodes Edges Processing Locations Senders
Fat tree 1584 14680 720 864
3D torus 1728 10368 432 864

IGen 4000 16924 401 800

Table: Largest graph sizes

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 57

Computational Evaluation Setup

Computational Setup

Implementation

all algorithms (except MCF-IP) are implemented in C/C++
VirtuCast uses SCIP [1], many different parameters to consider

separation
branching
heuristics
separation procedure: nested cuts, creep flow, cyclic generation...

MCF-IP is implemented using GMPL + CPLEX

Objective
Solve instances within reasonable time: 1 hour runtime limit

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 58

VirtuCast + LP-based Heuristics

Computational Evaluation Results

VirtuCast + LP-based Heuristics

Fat Tree IGen Torus

O
bj

.
G

ap
[%

]

●

0
1

2
3

4
5

6

I II III IV IV

●

●

●

0
1

2
3

4
I II III IV IV

●●●

●

0
1

2
3

4

I II III IV IV

D
ua

lB
ou

nd
Im

pr
ov

.
[%

]

● ●● ●●

I II III IV IV

0
1

2
3

4
5

6

●
● ● ●

I II III IV IV

0.
0

0.
5

1.
0

1.
5

●
●

●

I II III IV IV

0
1

2
3

4
5

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 60

MCF-IP

Computational Evaluation Results

MCF-IP: Performance

Fat Tree IGen Torus

R
oo

t
R
el

ax
at

io
ns

I II III IV

1
5

9
13

I II III IV

1
5

9
13

I II III IV

1
5

9
13

D
ua

lB
ou

nd
G

ap
[%

]

●

●●●

5
10

15
25

I II III IV

●● ●●●

2
5

20
50

I II III IV

●

●

●

<
0.

1
0.

2
0.

5

I II III IV

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 62

GreedySelect

Computational Evaluation Results

GreedySelect: Efficacy

Fat Tree IGen Torus

So
lu

ti
on

s
fo

un
d

I II III IV V

1
5

9
13

I II III IV V

1
5

9
13

I II III IV V

1
5

9
13

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 64

Computational Evaluation Results

GreedySelect: Performance

Fat Tree IGen Torus

O
bj

.
G

ap
[%

]

I II III IV V

0
20

40
60 ●

●

●●

I II III IV V
5

15
25

I II III IV V

25
30

35
40

R
un

ti
m

e
[s

]

I II III IV V

<
1

5
20

10
0

I II III IV V

5
20

10
0

50
0

I II III IV V

<
1

5
20

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 65

LP-based Heuristics

Computational Evaluation Results

LP-based Heuristics: Efficacy

Fat Tree IGen Torus

III

0
10

20
30

40

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
20

40

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
40

80
12

0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

V

0.
0

1.
0

2.
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0
2

4
6

8

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
0

1.
0

2.
0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 67

Computational Evaluation Results

LP-based Heuristics: Performance on graph size V

Fat Tree IGen Torus

O
bj

.
G

ap
[%

]

● ●

●
●

●

●
●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

2
10

50 ●

●●●
●●
●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

0.
5

5.
0

50
.0

R
un

ti
m

e
[s

]

●

●●●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
10

0
50

0

●

●●
●●
●●
●

●
●

●●

●
●●●
●

●
●

●●●

●●●●
●
●

●
●●●
●

●

●●

●

●
●

●

●

●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

20
50

●●●

●●●
●

G
D

G
S

D

F
G

S
D

M
S

S

M
S

F
D

R

50
20

0
10

00

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 68

Conclusion

Conclusion Summary

Publications
Matthias Rost, Stefan Schmid: OPODIS 2013 & arXiv [14, 13]
Matthias Rost (Adv. Stefan Schmid): M.Sc. Thesis [12]

Applications → Concise definition of CVSAP

Inapproximability

Approximations
• NVSTP
• VSTP
• VSAP

Exact Algorithms
• multi-commodity flow
• single-commodity flow
→ VirtuCast

Heuristics
• FlowDecoRound
• MultipleShots
• GreedyDiving
• GreedySelect

Extensive explorative Computational Evaluation

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 70

Conclusion Related Work

Related Work

Molnar: Constrained Spanning Tree Problems [9]

Shows that optimal solution is a ‘spanning hierarchy’ and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [11]

Consider a weaker variant of multicasting CVSAP without bandwidth
Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [15]

Provided heuristic and showed improvement in scalability.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 71

Conclusion Future Work

Future Work

Model Extensions
prize-collecting variants
concurrent multicast / aggregation sessions

Application Modeling
Stratosphere II: Big Data
UNIFY Project: flow analytics

IP formulation
try to derive further cuts / facets

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 72

Conclusion Future Work

Thanks

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 73

Conclusion Future Work

References I

[1] T. Achterberg.
SCIP: solving constraint integer programs.
Mathematical Programming Computation, 1(1):1–41, 2009.

[2] P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea.
Camdoop: Exploiting In-network Aggregation for Big Data Applications.
In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2012.

[3] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: A Stream Database for Network Applications.
In Proc. ACM SIGMOD International Conference on Management of Data, pages 647–651,
2003.

[4] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz, D. Staessens, A. Takács, and F.-J.
Westphal.
Unifying cloud and carrier network: Eu fp7 project unify.
In Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference on,
pages 452–457. IEEE, 2013.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 74

Conclusion Future Work

References II

[5] M. Ding, X. Cheng, and G. Xue.
Aggregation tree construction in sensor networks.
In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4,
pages 2168–2172. IEEE, 2003.

[6] C. Hermsmeyer, E. Hernandez-Valencia, D. Stoll, and O. Tamm.
Ethernet aggregation and core network models for effcient and reliable iptv services.
Bell Labs Technical Journal, 12(1):57–76, 2007.

[7] T. Koch and A. Martin.
Solving steiner tree problems in graphs to optimality.
Networks, 32(3):207–232, 1998.

[8] B. Krishnamachari, D. Estrin, and S. Wicker.
Modelling data-centric routing in wireless sensor networks.
In IEEE infocom, volume 2, pages 39–44, 2002.

[9] M. Molnár.
Hierarchies to Solve Constrained Connected Spanning Problems.
Technical Report lrimm-00619806, University Montpellier 2, LIRMM, 2011.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 75

Conclusion Future Work

References III

[10] S. Narayana, W. Jiang, J. Rexford, and M. Chiang.
Joint Server Selection and Routing for Geo-Replicated Services.
In Proc. Workshop on Distributed Cloud Computing (DCC), 2013.

[11] C. Oliveira and P. Pardalos.
Streaming cache placement.
In Mathematical Aspects of Network Routing Optimization, Springer Optimization and Its
Applications, pages 117–133. Springer New York, 2011.

[12] M. Rost.
Optimal Virtualized In-Network Processing with Applications to Aggregation and Multicast,
2014.

[13] M. Rost and S. Schmid.
The Constrained Virtual Steiner Arborescence Problem: Formal Definition,
Single-Commodity Integer Programming Formulation and Computational Evaluation.
Technical report, arXiv, 2013.

[14] M. Rost and S. Schmid.
Virtucast: Multicast and aggregation with in-network processing.
In R. Baldoni, N. Nisse, and M. Steen, editors, Principles of Distributed Systems, volume
8304 of Lecture Notes in Computer Science, pages 221–235. Springer International
Publishing, 2013.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 76

Conclusion Future Work

References IV

[15] S. Shi.
A proposal for a scalable internet multicast architecture.
In Washington Universtiy, 2001.

Matthias Rost (TU Berlin) Optimal Virtualized In-Network Processing Tel Aviv University, March 2015 77

	Virtualized In-Network Processing
	Introductory Example
	Applications

	Solution Approaches
	Outline
	Inapproximability
	Approximations
	Approximation Algorithms
	Exact Algorithms
	Decomposition Example
	Combinatorial Heuristic: GreedySelect
	LP-based Heuristics

	Computational Evaluation
	Setup
	Results

	Conclusion
	Summary
	Related Work
	Future Work

