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Finding ‘good’ embeddings is the core algorithmic challenge.

Algorithmic Solution Approaches
quality guarantees

none optimality
heuristics approximations exact algorithms

polynomial exponential
runtime

quality guarantees + bounded runtime⇝ predictable algorithm performance

Until now: only heuristics and exact algorithms known.

4



Thesis Overview



Thesis Overview
Prime Goals

1. Development of efficient approximation algorithms.

Virtual Network Embedding Problem

Computational Complexity
▶ Study structural hardness and
inapproximability.

• IFIP Networking '18 (best paper)
• IEEE/ACM TON (major rev.)

Problem Relaxations
▶ Find appropriate tractable
model relaxations.

Offline Approximations
▶ Use relaxations to obtain first
approximations.

• IFIP Networking '18 • arXiv '18 • IEEE/ACM TON (minor rev.) • ACM CCR '19

Heuristics for Offline Profit VNEP and Evaluation
▶ Derive heuristics and exploratively evaluate performance.

Specific Embeddings & Embedding Models
• ACM CCR '15

Virtual Clusters
▶ Study problem and optimize resource usage.

• IEEE IPDPS '14

Temporal VNEP
▶ Identify ways to harness temporal flexibilities.
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Reminder: 3-SAT and NP-Completeness

3-SAT-Formula ϕ

ϕ =
∧

Ci∈Cϕ Ci with Ci ∈ Cϕ being disjunctions of at most 3 literals.

Example 3-SAT formula ϕ over literals Lϕ = {x1, x2, x3, x4}
ϕ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

C1

∧ (x̄1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
C3

Definition of 3-SAT
Decide whether formula ϕ can be satisfied.

Decision Problems
Output is ‘yes’ or ‘no’.

Theorem: Karp [1972]
3-SAT is NP-complete.
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Methodology: Proving NP-completeness

Proving NP-completeness of the VNEP
1. Show that VNEP lies in NP (✓).
2. Reduce 3-SAT to VNEP.

Outline of Reduction Framework

3-SAT instance ϕ VNEP instance (Gr(ϕ), GS(ϕ), restrictions)

ϕ satisfiable? feasible embedding of Gr(ϕ) on GS(ϕ) under restrictions?
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Our Reduction Framework

Input: 3-SAT formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

Request Gr(ϕ)

▶ one virtual node per clause v1 v3v2

▶ edge (vi, vj) when Ci introduces literal used by Cj for i < j

Substrate GS(ϕ)

▶ 7 substrate nodes per clause:
represent satisfying assignments

▶ edges as for request,
only when assignments agree

x1,x2,x3 :TTT

x1,x2,x3 :TTF

x1,x2,x3 :TFT

x1,x2,x4 : TTT

x1,x2,x4 : TTF

x2,x3,x4 : TTT

x2,x3,x4 : TTF

x2,x3,x4 : TFTx1,x2,x4 : TFT
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Complete Picture
φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT
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Outline of Reduction Framework

3-SAT instance ϕ VNEP instance (Gr(ϕ), GS(ϕ), restrictions)

ϕ satisfiable? feasible embedding of Gr(ϕ) on GS(ϕ) under restrictions?
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Our Reduction Framework

Outline of Reduction Framework

3-SAT instance ϕ VNEP instance (Gr(ϕ), GS(ϕ), restrictions)

ϕ satisfiable? feasible embedding of Gr(ϕ) on GS(ϕ) under restrictions?

Base Lemma
Formula ϕ is satisfiable if and only if there exists a mapping of Gr(ϕ) on GS(ϕ), s.t.
(1) each virtual node vi is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.
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Computational Complexity Results

Base Lemma
Formula ϕ is satisfiable if and only if there exists a mapping of Gr(ϕ) on GS(ϕ), s.t.
(1) each virtual node vi is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Theorem: Decision VNEP is NP-complete under node placement and routing restrictions
Proof: via application of base lemma.
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What about other restrictions?
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Computational Complexity Results

▶ Finding a feasible embedding is in general not possible in polynomial-timea.
▶ The VNEP is inapproximable under any objective even for a single requesta.
▶ Computing valid mappings is already hard!
aunless P =NP holds

Additional Inapproximability Results
▶ Intractability even for approximate solutions when relaxing either

▶ node capacities or latencies by factor 2− ε, or
▶ edge capacities by factor log n/ log log n, with n = number of substrate nodes a.

aunless NP ⊆ BP-TIME(
∪

d≥1 n
d log logn)
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Relaxation: Valid Mappings

VNEP is NP-complete under …
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placement & routing
placement & latencies
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VNEP is NP-complete under …
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placement & routing
placement & latencies

Validity restrictions are non-negotiable.
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Relaxation: Valid Mappings

VNEP is NP-complete under …
Node Restrictions Edge Restrictions

placement & routing

Focus
Computing valid mappings under node
placement and routing restrictions.
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Valid mappings do not necessarily respect capacity constraints!
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Relaxation: Valid Mappings

Valid Mapping Problem (VMP)
Find valid mapping mr ∈Mr of least cost:
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∑
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Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.
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A B
1 4

1

Start with simplest request: single edge.

13



Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

A B
1 4

1

A B cost
u u

vu
v u
v v

Key Idea:
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Mapping Costs
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Key Idea:
Enumerate node mappings inside bag.

Validity
▶ nodes: trivial
▶ edges:
graph-search

Mapping Costs
▶ nodes: trivial
▶ edges: shortest-paths
(using allowed edges)

Dynamic programming works when guided by
tree decomposition Tr .

Runtime is exponential in max. bag size:
the treewidth tw(Tr).
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Excursion: Tree Decompositions and Treewidth

▶ Important concept in theoretical computer science→ parametrized complexity theory
▶ Finding tree decomposition of minimal width is NP-hard but fixed-parameter tractable.

Graph Class Treewidth
trees 1
cacti 2

series-parallel 2
(1-)outerplanar 2
k-outerplanar k + 1

planar unbounded

Internet

LB1 LB2Cache

FW

NAT
VM1

VM5

VM4VM3

VM2

Customer
Backend1 Backend2

Tree

Bags

Graph

Important request topologies have small treewidth.
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DYNVMP: Overview of Results

Theorem: Correctness & Runtime – Node Placement & Routing
DYNVMP solves the VMP in XP-time O(|Vr|3 · |VS |2·tw(Tr)+3).

Theorem: Generalization – Node Placement & Routing & Latencies

The DYNVMP algorithm finds a (1+ εLCSP)-optimal valid mapping, if one exists.
The XP-runtime is bounded by O(|Vr|2 · (|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εLCSP))).

Important Observation
▶ The VNEP reduces to the VMP, when any valid mapping is also feasible.
▶ DYNVMP solves the online VNEP optimally / approximatively in this setting.

Key Application: Solving the Fractional Offline VNEP
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Solving the Fractional Offline VNEP

Next Relaxation: allowing convex combinations of valid mappings
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Offline VNEP – request set R = {r1, r2, . . .}

Profit Variant
▶ Profit for requests br > 0
▶ Task: Embed subset of requests
feasibly maximizing the attained profit.

Cost Variant
▶ Resource costs cS : GS → R≥0

▶ Task: Find feasible embeddings for all
requests minimizing cost.
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Solving the Fractional Offline VNEP

Next Relaxation: allowing convex combinations of valid mappings

Fractional Offline VNEP: Linear Program (LP) for Profit
▶ Selection of k-th mapping:

▶ Select at most ‘one’ mapping:

▶ Enforce capacities:

▶ Maximize the profit:

fk
r ∈ [0, 1] ∀r ∈ R,mk

r ∈Mr (1)∑
mk

r∈Mr

fk
r≤ 1 ∀r ∈ R (2)∑

r∈R

∑
mk

r∈Mr

A(mk
r , x) · fk

r≤ dS(x) ∀x ∈ GS (3)

max
∑
r∈R

∑
mk

r∈Mr

br · fk
r (4)
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▶ Enforce capacities:

▶ Maximize the profit:

fk
r ∈ [0, 1] ∀r ∈ R,mk

r ∈Mr (1)∑
mk

r∈Mr

fk
r≤ 1 ∀r ∈ R (2)∑

r∈R

∑
mk

r∈Mr

A(mk
r , x) · fk

r≤ dS(x) ∀x ∈ GS (3)

max
∑
r∈R

∑
mk

r∈Mr

br · fk
r (4)

XP-Tractable via Column Generation
▶ Dual LP has finitely many variables but exponential number of constraints.
▶ Dual constraints can be separated using DYNVMP algorithm.
⇝ runtime O

(
poly

(∑
r∈R |Vr|3 · |VS |2·tw(Tr)+3

))
due to Grötschel et al. [1988]
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Randomized Rounding: Intuition

Example
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Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : LP solution
foreach r ∈ R do

choose mk
r with probability f k

r

end
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XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
do

solution← ROUNDINGPROCEDURE
while(

not (α, β, γ)-approximate
and rounding tries not exceeded

)

Algorithm: RoundingProcedure
Input : LP solution
foreach r ∈ R do

choose mk
r with probability f k

r

end
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XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
do

solution← ROUNDINGPROCEDURE
while(

not (α, β, γ)-approximate
and rounding tries not exceeded

)

Proof via Chernoff & Hoeffding bounds.

Main Theorem: (XP-)Approximation for the Virtual Network Embedding Problem
The Algorithm returns (α, β, γ)-approximate solutions of at least an α fraction of the
optimal profit, and allocations on nodes and edges within factors of β and γ of the
original capacities, respectively, with high probability.
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Worst-Case Analysis
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Overview of XP-Approximation Results

Obj. Setting
Approximation Factors

Runtime
α β − β′ γ − γ′

Cost
⟨VE |NR ⟩ 2 2 2 poly

(∑
r∈R |Vr|3 · |VS |2·tw(Tr)+3

)
⟨VE |NRL ⟩ 2+ 2 · εLCSP 2+ 2 · εLCSP 2+ 2 · εLCSP poly

(∑
r∈R |Vr|2 ·

(
|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εLCSP)

))
Profit

⟨VE |NR ⟩ 1/3 1 1 poly
(∑

r∈R |Vr|3 · |VS |2·tw(Tr)+3
)

⟨VE |NRL ⟩ 1/(3+ 3 · εLCSP) 1+ εLCSP 1+ εLCSP poly
(∑

r∈R |Vr|2 ·
(
|Vr| · |VS |2·tw(Tr)+2 + timeLCSP(εLCSP)

))
▶ β′ = ε ·

√
2 ·∆(VS) · log |VS |, γ′ = ε ·

√
2 ·∆(VS) · log |VS |

▶ εLCSP > 0 must hold; timeLCSP(εLCSP) is polynomial in 1/εLCSP (and input)

19
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Derived & Benchmark Heuristics

Derived Heuristics: Key Ideas
▶ Goal: feasibility

▶ reactive: discard rounded mapping
upon violation
▶ proactive: forbid mappings violating
capacities and recompute LP

▶ Sample solutions
▶ Different request orders

Benchmark Heuristics: WINE / VINE
▶ VINE – single request mapping

▶ uses randomized rounding to map
virtual nodes
▶ realizes edges via shortest paths

▶ WINE – offline adaptation
▶ greedy: process according to profit
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Computational Evaluation: Setup

Substrate: GEANT

Explorative Study – Vast Parameter Space
Treewidth: 1, 2, 3, 4

Number of requests: 40, 60, 80, 100
Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0
Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0
Instances per combination: 15

Requests
▶ #nodes uniformly chosen from {5, . . . , 15}
▶ topology: random but with specific treewidth
▶ node mappings restricted to 10 nodes

Code available:
https://github.com/vnep-approx/
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Evaluation Results

Investigate qualitative potential of randomized rounding heuristics.
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Observations
▶ overall 6.53% (rel.) improvement
▶ outperforms WiNE in > 99.9%:

▶ ERFs 1.0, 2.0 and 80, 100 requests
▶ performance increases with
#requests

Efficiency – Total Heuristic Runtime
▶ < 200s for treewidths 1, 2, 3
▶ < 1000s for treewidth 4
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Thesis Overview and Contributions
Virtual Network Embedding Problem

Computational Complexity
▶ NP-completeness in
various settings

▶ Structural hardness
▶ VMP is NP-complete
▶ even planar requests

Problem Relaxations
▶ Valid Mapping Problem

▶ DYNVMP Algorithm
▶ Fractional VNEP

▶ Column Generation LP

Offline Approximations
▶ XP-time approximations
▶ under all restrictions
▶ profit and cost

Heuristics for Offline Profit VNEP and Evaluation
▶ no capacity violations ▶ can consistently outperform heuristic

Derived several novel theoretic results and showed applicability in practice.
Specific Embeddings & Embedding Models

Virtual Clusters
▶ optimal algorithm for resource minimization
▶ hose-model⇝ bandwidth reduction

Temporal VNEP
▶ incorporation of scheduling aspects
▶ Mixed-Integer Programs to harness flexibility
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