Virtual Network Embeddings:

Theoretlcal Foundations and Provably Good Algorithms
Cover prObabllltym putational’ l>1n t",'.._.

=
i o%:
VNEP separation Mixed C NP QSEE
el XPam VLU eAces Nolis
,,,,,,,,,,,,,,,,,,, L
algo rltnm ﬂ,ow.” ..app rox1mat10n§g
VC;)Og‘iy:\cl)mal €Cor er randomized rounding - 4~ £

_ Matthlas Rost .
Technische Universitat Berlin
wissenschaftliche Aussprache, 25. Marz 2019

Virtual Networks

Virtual Networks

Cloud Applications Physical Infrastructure: Data Center

Virtual Networks

Virtual Machines Physical Infrastructure: Data Center
’IﬁJ 4ﬁu
&4 &3

i

i W

3vCPU 1vCPU

(]
4
—
o
=
)
Q
=2
©
-
fra)
=
=

Ications

Network-dependent Appl

Virtual Machines

HIGH gy "B LOGS TYPES
= I;!_V‘[_‘W[
A

Fog / Edge

= 8
=
==y
=" =
Are g 2
SO ELLIEE
=
JEEEPSEEC 2
=R 2 e =
sg:imisie—I="
ZEESIEESCOE
SEIRER= z
=ts

s

W

& COLLECTION

TO0LS Falren ALY

o0 SHARING oiee
STORAGE

4 vCPU

1vCPU

1vCPU

3vCPU

(]
—
o
=
)
Q
=2
©
-
fra)
=
=

Ications

Network-dependent Appl

Virtual Network

RS

NAKG

D g0

SOBITS]

YSTENSSIE

BUSINESS SIFTWRE

ONEPAGE
s
A A
[y
0
I
i
14
i
'
it
1
H
H
:
H
:
:
H
H

EEpg =
5SRO = DH L
e A EN LI = s
=k [l oE S e .

2 = o8 = e

EZF 2Es .

SEeagss

4 vCPU

iﬁ 1Gbps iﬁ
l—» l
6 Gbps
1 Gbps

— i
1 Gbps IH
1vCPU

Gbps

1i
3vCPU

1vCPU

R
i
e

Ications

NAVAGE

=
=
WE

VOLUNE

o SOURCES
SYSTENS

G 00T DENSITY

AREAS
e =
BUSINESS SFTWARE,

=

PETABYTES JOUNT

RELATIONAL werevsousst

[T
|‘ﬁ

VEFEE

VSUALZATON

0reo
§18
I
199
009
818
§re
I
89
I
89
P
I
1]
i
IR
89
LI
i

ESEwiid - ST
iggRco = DH s
nmwMAm ENEIU = Seseseere
=k [l oE S S oo

5 = SO 8 e 5= SosereseiaTeees

gt U=

St d

Network-dependent Appl

(]
4
—
o
=
)
Q
=2
©
-
fra)
=
=

_l

4 VCPU
Goal: Predictable Performance

—_—
6 Gbps
1 Gbps 1 Gbps
—
IH 1Gbps
3 vCPU

Virtual Network

1vCPU

Virtual Network Embeddings

Virtual Network Embeddings

Request Substrate
Virtual Network Physical Network
4 2 5
—Al Ol g EX
3]
demand H 5 M@ 5 capacity
[2] [2]
D] C
3 1 0 3 1

Virtual Network Embeddings

Request

Substrate
Virtual Network Physical Network
A ; 0/2 [073 0/5
073
demand H 5 M@ 573 used/jtotal
capacit
072 072 pacty
D] C
3 1 0/0 0/3 0/1

Virtual Network Embeddings

Request

Substrate
Virtual Network Physical Network
."m 4 \\.- 1/2 073 0/5
A B = A
073
demand H 5 M@ 573 used/jtotal
capacit
072 072 pacty
D] C
3 1 0/0 0/3 0/1

Mapping Properties
» virtual nodes are mapped to substrate nodes

Virtual Network Embeddings

demand

Request Substrate
Virtual Network Physical Network
.'xm 4 '."'v‘:, 1/2 0/3 “\ 475
A B AfF—rr=r—B
(1] ¢ 0/2
ol l¢ 072 o072
3 1 0/0 0/3

0/1

Mapping Properties

» virtual nodes are mapped to substrate nodes

» virtual edges are mapped to substrate paths

used/total
capacity

Virtual Network Embeddings

demand

Request Substrate

Virtual Network Physical Network

A 5 Cz/z/ 73 \4/5
N S K R g >=[ac 73] \g

1/3

[l i 02
D Il' C ________ . m m
3 1 0/0 0/3

0/1

Mapping Properties

» virtual nodes are mapped to substrate nodes

» virtual edges are mapped to substrate paths

used/total
capacity

Virtual Network Embeddings

demand

Request Substrate
Virtual Network Physical Network
A ',""{: Cz Y o N5
T i >=[ac B
o 173
A ¢ m A i
172 172
D |l' C ________ W_I D |7_|
. N 0/0 \—/‘\g

~el

1/1

Mapping Properties

» virtual nodes are mapped to substrate nodes

» virtual edges are mapped to substrate paths

used/total
capacity

Virtual Network Embeddings

Request
Virtual Network

Substrate

Physical Network

....................................
-

o Cz Y 573 \Es
A B - z|AC B

173

demand (1] ¢ m . 172

o 172 172

D m C """" D

. N 0/0 \—/‘\g

Feasibility

capacities are not exceeded

1/1

used/total
capacity

Virtual Network Embeddings

Request
Virtual Network

...........

Substrate
Physical Network

-

m B @ A
A Bl------ = IAC B
173
demand H 5 [T used/jtotal
o capacit
72 g 172 pacty
D m C """" D
RS 0/0 . 171
Feasibility Use-Case Specific Validity

capacities are not exceeded

additional requirements may be imposed

Virtual Network Embeddings

Request Substrate
Virtual Network Physical Network
A ',""{: Cz Y o N5
Y i ->=/AC B
173
A ¢ m A i
D Il' C ________ . m D mil
e [0/0 _/‘;7; 171
Feasibility Use-Case Specific Validity
capacities are not exceeded » Node Placement Restrictions
» Routing Restrictions
» Latency Restrictions

Virtual Network Embeddings

Request Substrate
Virtual Network Physical Network

a Jac] B

Feasibility Use-Case Specific Validity
capacities are not exceeded » Node Placement Restrictions

» Routing Restrictions

» Latency Restrictions

Virtual Network Embeddings

Request Substrate
Virtual Network Physical Network

Feasibility Use-Case Specific Validity
capacities are not exceeded » Node Placement Restrictions

» Routing Restrictions

» Latency Restrictions

Virtual Network Embeddings

Request Substrate
Virtual Network Physical Network

\spms -
A
2 ms
\ J

Feasibility Use-Case Specific Validity
capacities are not exceeded » Node Placement Restrictions

» Routing Restrictions

» Latency Restrictions

The Embedding Problem Zoo
& Related Work

The Embedding Problem Zoo & Related Work

Classification

Restrictions Node Placement

Network Type

The Embedding Problem Zoo & Related Work

Classification

Restrictions Node Placement Routing Latencies

3 X L |

B4 B9 Ed &Y L5]

Network Type

B3 &3 B & & &

Virtual Networks ~ 2006

general request topologies lz I
-—H

The Embedding Problem Zoo & Related Work

Classification

Restrictions Node Placement

Network Type

Virtual Networks ~ 2006 Virtual Clusters ~ 2011

(
VM, VM4
general request topologies l ; I VMs *VN& VMs %vmz
-—m VM, VM3 VM, o/A VM3

The Embedding Problem Zoo & Related Work

Classification

Restrictions Node Placement

Network Type

Virtual Networks ~ 2006 Virtual Clusters ~ 2011

VM, VM4
general request topologies ; I VMs VM, VMs %vmz
+-—H 4 VM3 VM, ./A VM3

VM

Service Chains =~ 2012

LB, / \ LB, NAT

CEY YD S S S
Customer /\ FW Internet
Backend{ Backend, A

The Embedding Problem Zoo & Related Work

Classification

Restrictions

Network Type

Node Placement

Routing Latencies

3 X

B4 B9 Ed &Y |

&3 &3 &3 &3 []

Virtual Networks ~ 2006

general request topologies lz I
-—H

Service Chains =~ 2012

LB, / \ LB, NAT

CEY YD S S S
Customer /\ FW Internet
Backend{ Backend,

Virtual Clusters ~ 2011

VM, VM,
VM5 *VMz VMg %VMZ
VM, VM3 VM, ./ VM3

Virtual Data Centers ~ 2013

VDC1 VDC2 vDCq
l : I VDC5% vDC,
vDC, m«——mVvDC;3 vDC, ./A vDC3

4

The Embedding Problem Zoo & Related Work

Virtual Networks ~ 2006 Virtual Clusters ~ 2011
VM4
general request topologies l ; I * VMS-%VN&
-—H VM, ./A VM
Service Chains = 2012 Virtual Data Centers ~ 2013

m vDCq vDC, vDCq
e, Cacne\p1ozNAT I e, e,
Customer /\ FwW Internet ./A
Backend Backend, vDC, m«——mVvDC;3 vDC, vDC3

[Finding ‘good’ embeddings is the core algorithmic challenge. }

The Embedding Problem Zoo & Related Work

Virtual Networks ~ 2006 | Virtual Clusters ~ 2011 Service Chains ~ 2012 Virtual Data Centers =~ 2013

. vDCq o vDCz VDG4
. LB NAT
general topolog|es o, o et W vDCs voCz
Customer //\\ Fw Internet
[p— My, VM3 My, Backend{ Backend, vDC, u-—I vDC3 chA vDC3

[Finding ‘sood’ embeddings is the core algorithmic challenge. J

Objectives

Online Setting — Request Sequence Offline Setting — Multiple Requests
» min. resource usage / costs » max. profit via admission control

» min. resource fragmentation » min. resource consumption

The Embedding Problem Zoo & Related Work

Virtual Networks ~ 2006 | Virtual Clusters ~ 2011 Service Chains ~ 2012 Virtual Data Centers =~ 2013

. vDCq o vDCz VDG4
. LB NAT
general topolog|es o, o et W vDCs voCz
Customer //\\ Fw Internet
[p— My, VM3 My, Backend{ Backend, vDC, u-—I vDC3 chA vDC3

[Finding ‘sood’ embeddings is the core algorithmic challenge. J

Algorithmic Solution Approaches

heuristics exact algorithms

The Embedding Problem Zoo & Related Work

Virtual Networks ~ 2006 | Virtual Clusters ~ 2011 Service Chains ~ 2012 Virtual Data Centers =~ 2013

. vDCq o vDCz VDG4
. LB NAT
general topolog|es o, SYETD L vDCs voCz
Customer //\\ Fw Internet
[p— My, VM3 My, Backend{ Backend, vDC, u-—I vDC3 vDCA vDC3

[Finding ‘sood’ embeddings is the core algorithmic challenge.]

Algorithmic Solution Approaches

quality guarantees

none optimality

heuristics exact algorithms

The Embedding Problem Zoo & Related Work

Virtual Networks ~ 2006 | Virtual Clusters ~ 2011 | Service Chains ~ 2012 Virtual Data Centers =~ 2013

vDCy VDG,

vDCq
general topologies o, el vocs e
Customer / \ Fw Internet .}
M, VM3 Mg Backend Backend, vDC, vDC3 vDC,, vDC3

[Finding ‘sood’ embeddings is the core algorithmic challenge.]

Algorithmic Solution Approaches

quality guarantees

none optimality

heuristics exact algorithms

polynomial exponential

runtime

The Embedding Problem Zoo & Related Work

Virtual Networks &z 2006 | Virtual Clusters &~ 2011 || Service Chains =~ 2012 Virtual Data Centers ~ 2013
vDCy VDG, W0Gs
; 5 .VM M, .?/ﬁzf' __ he B2 NAT VDG -Q/ﬁza?wcz
general tOpOlogles ’ ’ Customer //\\ Internet ’ .j
M, VM3 M, Backend Backendz vDC, vDC3 vDC, vDC;

[Finding ‘sood’ embeddings is the core algorithmic challenge.]

Algorithmic Solution Approaches

quality guarantees

none optimality

heuristics approximations exact algorithms

polynomial exponential

runtime

The Embedding Problem Zoo & Related Work

[Finding ‘good’ embeddings is the core algorithmic challenge.]

Algorithmic Solution Approaches

quality guarantees
none NI optimality

heuristics approximations exact algorithms
polynomial FEaaISIa exponential
runtime

quality guarantees + bounded runtime ~ predictable algorithm performance

The Embedding Problem Zoo & Related Work

[Finding ‘good’ embeddings is the core algorithmic challenge.]

Algorithmic Solution Approaches

quality guarantees
none NI optimality

heuristics approximations exact algorithms
polynomial FEaaISIa exponential
runtime

‘ quality guarantees + bounded runtime ~ predictable algorithm performance

[Until now: only heuristics and exact algorithms known.]

Thesis Overview

Thesis Overview

\ Prime Goals |
\ 1. Development of efficient approximation algorithms. \

Virtual Network Embedding Problem

Thesis Overview

\ Prime Goals |
\ 1. Development of efficient approximation algorithms. \

Virtual Network Embedding Problem

Computational Complexity
» Study structural hardness and
inapproximability.

Thesis Overview

\ Prime Goals |
\ 1. Development of efficient approximation algorithms. \

Virtual Network Embedding Problem

Computational Complexity
» Study structural hardness and
inapproximability.

- IFIP Networking "18 (best paper)
- |[EEE/ACM TON (major rev.)

Thesis Overview

\ Prime Goals |
\ 1. Development of efficient approximation algorithms. \

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations
» Study structural hardness and » Find appropriate tractable
inapproximability. model relaxations.

- IFIP Networking "18 (best paper)
- |[EEE/ACM TON (major rev.)

Thesis Overview

\ Prime Goals |
\ 1. Development of efficient approximation algorithms. \

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations
» Study structural hardness and » Find appropriate tractable » Use relaxations to obtain first
inapproximability. model relaxations. approximations.

- IFIP Networking "18 (best paper)
- |[EEE/ACM TON (major rev.)

Thesis Overview

\ Prime Goals |
1. Development of efficient approximation algorithms.

2. Bridge gap between theory and practice: efficient heuristics.

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations
» Study structural hardness and » Find appropriate tractable » Use relaxations to obtain first
inapproximability. model relaxations. approximations.

- IFIP Networking "18 (best paper)
- |[EEE/ACM TON (major rev.)

Heuristics for Offline Profit VNEP and Evaluation
» Derive heuristics and exploratively evaluate performance.

Thesis Overview

\ Prime Goals |
1. Development of efficient approximation algorithms.

2. Bridge gap between theory and practice: efficient heuristics.

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations

» Study structural hardness and » Find appropriate tractable » Use relaxations to obtain first
inapproximability. model relaxations. approximations.

- IFIP Networking "18 (best paper) ‘ [- IFIP Networking "18 - arXiv 18 - IEEE/ACM TON (minor rev.) - ACM CCR '19 J—

* IEEE/ACM TON (major rev. Heuristics for Offline Profit VNEP and Evaluation

» Derive heuristics and exploratively evaluate performance.

Thesis Overview

\ Prime Goals |
1. Development of efficient approximation algorithms.

2. Bridge gap between theory and practice: efficient heuristics.

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations

» Study structural hardness and » Find appropriate tractable » Use relaxations to obtain first
inapproximability. model relaxations. approximations.

- IFIP Networking "18 (best paper) ‘ [- IFIP Networking "18 - arXiv 18 - IEEE/ACM TON (minor rev.) - ACM CCR '19 J—

* IEEE/ACM TON (major rev. Heuristics for Offline Profit VNEP and Evaluation

» Derive heuristics and exploratively evaluate performance.

Specific Embeddings & Embedding Models

(-ACM CcR 5| (- IE€E 1PDPS "4 |
Virtual Clusters Temporal VNEP
» Study problem and optimize resource usage. » Identify ways to harness temporal flexibilities.

Computational Complexity
of the VNEP

Reminder: 3-SAT and N'P-Completeness

3-SAT-Formula ¢

¢ = N¢,ec, Ci With C; € Cg being disjunctions of at most 3 literals.

Example 3-SAT formula ¢ over literals £, = {21, 22, 23, 24}

(
L
{
|

(ﬁz(1‘1\/332\/:133)/\(:?1Vw2Vl’4)/\(l’2Vi‘3\/ZI)4)

- /
-~

C G Cs

) R A NS

Reminder: 3-SAT and N'P-Completeness

3-SAT-Formula ¢

¢ = N¢,ec, Ci With C; € Cg being disjunctions of at most 3 literals.

Example 3-SAT formula ¢ over literals £, = {21, 22, 23, 24}

(
L
(
|

(ﬁz({L‘1\/:132\/:133)/\(:31V$2Vl’4)/\(l’2Vi‘3\/ZI)4)

- /

C1 CZ

C3

w
J
w
J

Definition of 3-SAT

Decision Problems

)

[
|

Decide whether formula ¢ can be satisfied.

]
J

[
i

Output is ‘yes’ or ‘no’,

)

Reminder: 3-SAT and N'P-Completeness

(3-SAT-Formula ¢ W
L ¢ = N¢,ec, Ci With C; € Cg being disjunctions of at most 3 literals. J
(Example 3-SAT formula ¢ over literals £, = {21, 22, 23, 24} 1
¢ = (1‘1 \/£E2V:L"3)/\(:E1 V$2Vl’4)/\ (l’z\/i‘3\/l‘4)
C G Cs
[Definition of 3-SAT |(Decision Problems |

Decide whether formula ¢ can be satisfied. jt Output is ‘yes’ or ‘no’. J

(Theorem: Karp [1972] W
| 3-SAT is A/P-complete. |

Methodology: Proving N'P-completeness

(Proving A'P-completeness of the VN EPW
F Show that VNEP lies in NP (V). J

2. Reduce 3-SAT to VNEP.

Outline of Reduction Framework

3-SAT instance ¢ VNEP instance (G,.4), Gs(4), restrictions)

¢ satisfiable? — — feasible embedding of G,(4) on Gg(4) under restrictions?

Our Reduction Framework

(Proving N'P-completeness of the VN EPW
T. Show that VNEP lies in NP (V). J

2. Reduce 3-SAT to VNEP.

Outline of Reduction Framework

3-SAT instance ¢ VNEP instance (G,.4), G's(4), restrictions)

¢ satisfiable? —— —— feasible embedding of G, (4 on Gg(4) under restrictions?

Our Reduction Framework

[Input: 3-SAT formula ¢ = (.’L‘q VaxV 333) VAN (531 VayV $4) VAN (xz V3V $4)

(7

Request G, (¢)

» one virtual node per clause

represent satisfying assignments 2. xa TTF

» 7 substrate nodes per clause: -

» edges as for request,
only when assignments agree

Complete Picture

o: (21 V @2 V T3) A (F1V 22 V 34) A (w2 V T3 V 24)

Grig): O " \2/ ------ —B(

v T, T9, x4 : TTT — To, 23,24 1 TTT
‘,; oo e 1T

/

Gs(9):

Lo, 23,24 : FTT

1,29, 24 : FFF o, 23,24 : FFF

Our Reduction Framework

Outline of Reduction Framework

3-SAT instance ¢ VNEP instance (G,.g), G's(g), restrictions)

¢ satisfiable? —— — feasible embedding of G,4) on G4 under restrictions?

Our Reduction Framework

Outline of Reduction Framework

3-SAT instance ¢ VNEP instance (G,.g), Gs(4), restrictions)

¢ satisfiable? — > feasible embedding of G,.4) on G, under restrictions?

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G,) on Ggg), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

. J

Computational Complexity Results

r

~

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G,) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

J

(. » 7
Theorem: Decision VNEP is N’P-complete under node placement and routing restrictions
Proof: via application of base lemma.

. J

11

Computational Complexity Results

(7

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, on Ggg), St.
(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
\(2) all virtual edges are mapped on exactly one substrate edge.

J

(Theorem: Decision VNEP is NP-complete under node placement and routing restrictions |

[Node placement restrictions enforce (1))

/@\ ©

— =
m— S (cmmm— P
e | We—— |)

Computational Complexity Results

(7

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, on Ggg), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

J

(Theorem: Decision VNEP is NP-complete under node placement and routing restrictions |

[Node placement restrictions enforce (1) 1 (Routing restrictions enforce (2)

1l

11

Computational Complexity Results

[Base Lemma)
Formula ¢ is satisfiable if and only if there exists a mapping of G,) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

[Theorem: Decision VNEP is N"P-complete under node placement and routing restrictions J

What about other restrictions?

11

Computational Complexity Results

[Base Lemma)
Formula ¢ is satisfiable if and only if there exists a mapping of G,) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

[Theorem: VNEP is NP-complete under ...)
Node Restrictions Edge Restrictions
capacities & capacities
capacities & routing
placement & capacities
placement & routing
placement & latencies

11

Computational Complexity Results

[Base Lemma)
Formula ¢ is satisfiable if and only if there exists a mapping of G,) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

[Theorem: VNEP is NP-complete under ... 1 (Theorem: NP-Completeness remains if ... |
Node Restrictions Edge Restrictions substrate is acyclic and
capacities & capacities request is acyclic and
capacities & routing request is planar and
placement & capacities request has max degree 12.
placement & routing b g
placement & latencies

11

Computational Complexity Results

[Theorem: VNEP is AN"P-complete under ... | [Theorem: A"P-Completeness remains if ... |
Node Restrictions Edge Restrictions substrate is acyclic and
capacities & capacities request is acyclic and
capacities & routing request is planar and
placement & capacities request has max degree 12.
placement & routing b g
_ Placement & latencies | Practical Implications?

11

Computational Complexity Results

[Theorem: VNEP is AN"P-complete under ... | [Theorem: A"P-Completeness remains if ... |
Node Restrictions Edge Restrictions substrate is acyclic and
capacities & capacities request is acyclic and
capacities & routing request is planar and
placement & capacities request has max degree 12.
placement & routing) ’
_ Placement & latencies | Practical Implications ...

» Finding a feasible embedding is in general not possible in polynomial-time?.

%unless P = NP holds

11

Computational Complexity Results

[Theorem: VNEP is AN"P-complete under ... | [Theorem: A"P-Completeness remains if ... |
Node Restrictions Edge Restrictions substrate is acyclic and
capacities & capacities request is acyclic and
capacities & routing request is planar and
placement & capacities request has max degree 12.
placement & routing) ’
_ Placement & latencies | Practical Implications ...

» Finding a feasible embedding is in general not possible in polynomial-time?.
» The VNEP is inapproximable under any objective even for a single request?.

%unless P = NP holds

11

Computational Complexity Results

[Theorem: VNEP is AN"P-complete under ... | [Theorem: A"P-Completeness remains if ... |
Node Restrictions Edge Restrictions substrate is acyclic and
capacities & capacities request is acyclic and
capacities & routing request is planar and
placement & capacities request has max degree 12.
placement & routing) ’
_ Placement & latencies | Practical Implications ...

» Finding a feasible embedding is in general not possible in polynomial-time?.
» The VNEP is inapproximable under any objective even for a single request?.
» Computing valid mappings is already hard!

“unless P=NP holds

11

Computational Complexity Results

» Finding a feasible embedding is in general not possible in polynomial-time?.

» The VNEP is inapproximable under any objective even for a single request?.

» Computing valid mappings is already hard!
9unless P =NP holds

(. J

(Additional Inapproximability Results
» Intractability even for approximate solutions when relaxing either
» node capacities or latencies by factor 2 — ¢, or
» edge capacities by factor logn/loglogn, with n = number of substrate nodes 9.

‘unless NP C BP-TIME(5, n %18 ™)

. J

11

Problem Relaxations

Relaxation: Valid Mappings

r

VNEP is N’P-complete under ...
Node Restrictions Edge Restrictions

: & :
placement & routing
placement & latencies

12

Relaxation: Valid Mappings

r

VNEP is N’P-complete under ...
Node Restrictions Edge Restrictions

: & : Validity restrictions are non-negotiable.
placement & routing
placement & latencies

12

Relaxation: Valid Mappings

(VNEP is N’P-complete under ... W f Focus)
{ Node Restrictions Edge Restrictions J Computing valid mappings under node J

placement & routing placement and routing restrictions.

12

Relaxation: Valid Mappings

(VNEP is N’P-complete under ... W f Focus)
{ Node Restrictions Edge Restrictions J Computing valid mappings under node J

placement & routing placement and routing restrictions.

Request r Valid Mappings M, = {m!,m2 m3,...}
7

Valid mappings do not necessarily respect capacity constraints!

12

Relaxation: Valid Mappings

(Valid Mapping Problem (VMP) 1 f Focus)
Find valid mapping m, € M, of least cost: Computing valid mappings under node
cs(my) =D peq cs(@) - A(my,) placement and routing restrictions.

Request r Valid Mappings M, = {m!,m2,m3, ..}

Valid mappings do not necessarily respect capacity constraints!

12

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming.]

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J

Start with simplest request: single edge.

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

Key ldea:
Enumerate node mappings inside bag.

cost

<<cc|p|| ® |

<c<c|m

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

Key ldea:
Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:

cost

graph-search

<<cc|p|| ® |

<c<c|m

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

cost

<<cc|p|| ® |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

cost

<<cc|p|| ® |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

<<cc|p||l |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

<<cc|p||l |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

<<cc|p|| ® |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

<<cc|p|| ® |

<c<c|m

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs
- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A | B | cost B graph-search (using allowed edges)
ulv| 2 U
vV |Uu 00 \'
vV |V 5 \'

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J

Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs

- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv | 2 U
vV |Uu 00 \'
vV |V 5 \'

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
? cost
Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs

- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv | 2 U
vV |Uu 00 \'
vV |V 5 \'

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
? cost
| U | o | Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs
- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv | 2 C (1
vV |Uu 00 \'
vV |V 5 \'

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
? cost
Y R - Key Idea:' o
Enumerate node mappings inside bag.
Validity Mapping Costs
- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv| 2 |- U
vV |Uu 00 = |V
vV |V 5 — -1V

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
? cost
e [— Key Idea:' o
Enumerate node mappings inside bag.
Validity Mapping Costs
- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv| 2 |- U
vV |Uu 00 = |V
vV |V 5 — -1V

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
? cost
= SN . Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs
- = » nodes: trivial » nodes: trivial
A—1—B » edges: » edges: shortest-paths
A [B] cost B graph-search (using allowed edges)
ulv | 2 U
vV |Uu 00 ad B/
vV |V 5 o« \'

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

DYNVMP algorithm: solve VMP via dynamic programming.

AgC | co

Key ldea:

Enumerate node mappings inside bag.

Validity
» nodes: trivial

» edges:
graph-search

Mapping Costs
» nodes: trivial

» edges: shortest-paths
(using allowed edges)

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
Key Idea:
Enumerate node mappings inside bag.
Validity Mapping Costs
» nodes: trivial » nodes: trivial
» edges: » edges: shortest-paths
graph-search (using allowed edges)

Dynamic programming works when guided by
tree decomposition 7.

Tree Decomposition

13

Solving the Valid Mapping Problem: DYNVMP Intuition

[DYNVMP algorithm: solve VMP via dynamic programming. J
Key ldea:
Enumerate node mappings inside bag.
Validity Mapping Costs
» nodes: trivial » nodes: trivial
» edges: » edges: shortest-paths
graph-search (using allowed edges)

Dynamic programming works when guided by
tree decomposition 7.

Tree Decomposition the treewidth tw(T,).

Runtime is exponential in max. bag size: J

Excursion: Tree Decompositions and Treewidth

L» Important concept in theoretical computer science — parametrized complexity theory J

» Finding tree decomposition of minimal width is A"P-hard but fixed-parameter tractable.

14

Excursion: Tree Decompositions and Treewidth

L» Important concept in theoretical computer science — parametrized complexity theory J

» Finding tree decomposition of minimal width is A"P-hard but fixed-parameter tractable.

Graph Class Treewidth

trees 1

cacti 2
series-parallel 2
(1-)outerplanar 2
k-outerplanar k+1

planar unbounded

14

Excursion: Tree Decompositions and Treewidth

L» Important concept in theoretical computer science — parametrized complexity theory J

» Finding tree decomposition of minimal width is A"P-hard but fixed-parameter tractable.

VM,
Graph Class Treewidth Graph \ NAT 'IEHVM
trees 1 Customer /\ Fw Internet VM.;’}\VM,|
cacti) Backend; Backend, '
series-parallel 2 Bags
(1-)outerplanar 2
k-outerplanar k+1 _
Tree
planar unbounded A\ et

Important request topologies have small treewidth.

14

DYNVMP: Overview of Results

(Theorem: Correctness & Runtime - Node Placement & Routing }
| DYNVMP solves the VMP in XP-time O(|V;[? - [V Pv(T)+3). J

15

DYNVMP: Overview of Results

Theorem: Correctness & Runtime - Node Placement & Routing
DYNVMP solves the VMP in XP-time O(|V;.* - |[Vg[2tW(7)+3),

. J

Theorem: Generalization - Node Placement & Routing & Latencies

15

DYNVMP: Overview of Results

Theorem: Correctness & Runtime - Node Placement & Routing
DYNVMP solves the VMP in XP-time O(|V;.* - |[Vg[2tW(7)+3),

. J

Theorem: Generalization - Node Placement & Routing & Latencies
The DYNVMP algorithm finds a (1 + e.csp)-optimal valid mapping, if one exists.
The XP-runtime is bounded by O(|V; | - (|V;] - [V 2™ (Tr)+2 4t time csp(ercsp)))-

15

DYNVMP: Overview of Results

Theorem: Correctness & Runtime - Node Placement & Routing
DYNVMP solves the VMP in XP-time O(|V;.* - |[Vg[2tW(7)+3),

. J

Theorem: Generalization - Node Placement & Routing & Latencies
The DYNVMP algorithm finds a (1 + e.csp)-optimal valid mapping, if one exists.
The XP-runtime is bounded by O(|V;2 - (|V;] - [Vs|2™(T)42 1 time csp(eLcsp))).-

Important Observation
» The VNEP reduces to the VMP, when any valid mapping is also feasible.

» DYNVMP solves the online VNEP optimally / approximatively in this setting.

15

DYNVMP: Overview of Results

Theorem: Correctness & Runtime - Node Placement & Routing
DYNVMP solves the VMP in XP-time O(|V; [- [Vg|> W (71)+3),

. J

Theorem: Generalization - Node Placement & Routing & Latencies
The DYNVMP algorithm finds a (1 + e.csp)-optimal valid mapping, if one exists.
The XP-runtime is bounded by O(|V;2 - (|V;] - [Vs|2™(T)42 1 time csp(eLcsp))).-

J

Important Observation
» The VNEP reduces to the VMP, when any valid mapping is also feasible.

» DYNVMP solves the online VNEP optimally / approximatively in this setting.

Key Application: Solving the Fractional Offline VNEP

15

Solving the Fractional Offline VNEP

[Next Relaxation: allowing convex combinations of valid mappings]

16

Solving the Fractional Offline VNEP

[Next Relaxation: allowing convex combinations of valid mappings }

Offline VNEP - request set R = {r,r,,...}

Profit Variant [Cost Variant
» Profit for requests b, > 0 » Resource costs c¢s : Gs — Rx>g
» Task: Embed subset of requests » Task: Find feasible embeddings for all

feasibly maximizing the attained profit. requests minimizing cost.

16

Solving the Fractional Offline VNEP

[Next Relaxation: allowing convex combinations of valid mappings j

Offline VNEP - request set R = {r,r,,...}

Profit Variant 1(Cost Variant
» Profit for requests b, > 0 » Resource costs c¢s : Gs — Rx>g
» Task: Embed subset of requests » Task: Find feasible embeddings for all

feasibly maximizing the attained profit. requests minimizing cost.

16

Solving the Fractional Offline VNEP

[Next Relaxation: allowing convex combinations of valid mappings j

Offline VNEP - request set R = {r,r,,...}

Profit Variant 1(Cost Variant
» Profit for requests b, > 0 » Resource costs c¢s : Gs — Rx>g
» Task: Embed subset of requests » Task: Find feasible embeddings for all

feasibly maximizing the attained profit. requests minimizing cost.

16

Solving the Fractional Offline VNEP

[Next Relaxation: allowing convex combinations of valid mappings j
Fractional Offline VNEP: Linear Program (LP) for Profit
» Selection of k-th mapping: fEelo,1] vr e R,mk e M, (1)
» Select at most ‘one’ mapping: > gk VreR (2)
mkeM,.
» Enforce capacities: S > A(mi,z)- fi<ds(z) VzeGs (3)
r€R mkeM,.
» Maximize the profit: max Z Z B o i (z)
TER mkeM,

16

Solving the Fractional Offline VNEP

Fractional Offline VNEP: Linear Program (LP) for Profit

» Selection of k-th mapping: fkelo,1) Vre R,mF e M, (1)
» Select at most ‘one’ mapping: Z k<1 VreR (2)
mkeM,
» Enforce capacities: > > A(mf,z)- fi<ds(z) VzeGs (3)
TER mrkeM,
» Maximize the profit: max Z Z by - fF (z)
rTER mkeM,
. J

XP-Tractable via Column Generation
» Dual LP has finitely many variables but exponential number of constraints.

» Dual constraints can be separated using DYNVMP algorithm.
~ runtime O (poly (3, cx [V5 [- [Vs[2®™(7)+3)) due to Grotschel et al. [1988]

16

Offline Approximation Algorithms

Randomized Rounding: Intuition

Example
(Substrate Network] (Requestri: 100€ | [Request r,: 50€
072 o7
=
10/0] |E, 10/1] L J L J

17

Randomized Rounding: Intuition

(7

Example
e R
Substrate Network [Requestr:100€ | [Requestr: 50€
2 0
[
e 10/0] ol L J L |

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

: W (f2: 5Mf22: 0;161(

Py J

ey

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

|

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input :LP solution
foreach r € R do

| choose m* with probability f*
end

- J

17

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

2 |

Idea: Treat weights as probabilities! Rounding Outcomes

Iter. Req.1 Req.2 Profit maxLoad J

Algorithm: RoundingProcedure
Input :LP solution
foreach r € R do

| choose m* with probability f*
end

) — —

- J

17

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r, (profit: 50€) Variables of r, (profit: 50€)
(fi=05](=03][ff=02)

GO

Idea: Treat weights as probabilities!

)

Rounding Outcomes

Algorithm: RoundingProcedure Iter. Req; 1 Reqéz Profit max Load
Input : LP solution 1 m m Lats 2007

foreach r € R do
| choose m* with probability f*
end

- J

17

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)
(fi=05](=03][ff=02)

GO

Idea: Treat weights as probabilities! (Rounding Outcomes 1
Algorithm: RoundingProcedure lter. Req.1 Req.2 Profit maxLoad
. 1 m] ma 150€ 200%
Input : LP solution ; 2 .
foreach r € R do 2 ™ 0 100€ 100%
| choose m* with probability f*
end

- J

17

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)

Idea: Treat weights as probabilities! Rounding Outcomes
Algorithm: RoundingProcedure lter. Req.1 Req.2 Profit max Load

. 1 m] ma 150€ 200%

Input : LP solution ; 2 .

foreach r € R do 2 ™ ¢ 100€ 100%

1 1 [

| choose m* with probability f* 3 m e 150€ - 200%
end I\ -

- J

17

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)
(fi=05](=03 f2=02) (f=o05]([B=016][=0]

o

Idea: Treat weights as probabilities! Rounding Outcomes
Iter. Req.1 Req.2 Profit maxLoad

Algorithm: RoundingProcedure

1 2 [¢)

Input : LP solution 1 m; mj 150€ 2000/)

foreach » € R do 2 m; 0 100€ 100%
1 1

| choose m! with probability f* 3 £ m, 150€ 200%

end 4 m? m) 150€ 200%

- J

Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1
(fA=05](f2=03][ff=02]

fae|

Variables of r, (profit: 50€)

(=05

(=06 £ =0)

|

Idea: Treat weights as probabilities!

Rounding Outcomes

Algorithm: RoundingProcedure

Input : LP solution

foreach r € R do
| choose m* with probability f*

end

&

Iter.

P wN

Regq.

1
my
3
my
1
my

2
ma

1 Req.2 Profit
m3 150€

0 100€

m) 150€

m) 150€

max Load
200%
100%
200%
200%

XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
do
| solution «+— ROUNDINGPROCEDURE
while
not (a, 3,7)-approximate \

\\and roundingfries nof exceeded | J

Algorithm: RoundingProcedure
Input : LP solution
foreach r € R do

| choose m¥ with probability f*
end

18

XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit [Proof via Chernoff & Hoeffding bounds. j

// perform preprocessing
compute optimal LP solution

do
| solution <~ ROUNDINGPROCEDURE

while
(not (a, 8,7)-approximate \

Main Theorem: (XP-)Approximation for the Virtual Network Embedding Problem 1
The Algorithm returns («, 8,7)-approximate solutions of at least an « fraction of the
optimal profit, and allocations on nodes and edges within factors of 8 and ~ of the
\original capacities, respectively, with high probability.

18

XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit) Definition of Parameters -
5 a=1/3 (relative achieved profit)

// perform preprocessing
compute optimal LP solution B=(1+e-v2-A(Vs) log|Vs]) (maxnode load)
do ' v=(+e-+/2-A(Es) -log|Eg|) (max edge load)

\ .solut|on < ROUNDINGPROCEDURE T
while reR,c€Rg

(not (a, 8,7)-approximate \

= max (total / single) alloc

R of d
\ ST fres anF evresded | A(X>=;n€a§2(Amaxv,z)/dmax(r,z))z<S“mov‘” o sduare)

(. J

(Main Theorem: (XP-)Approximation for the Virtual Network Embedding Problem
The Algorithm returns («, 8,7)-approximate solutions of at least an « fraction of the
optimal profit, and allocations on nodes and edges within factors of 8 and v of the
original capacities, respectively, with high probability.

18

XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)

Definition of Parameters

// perform preprocessing
compute optimal LP solution
do
| solution «+~ ROUNDINGPROCEDURE
while
not (e, 8,7)-approximate \

\\and roundingfries nof exceeded | J

-

a=1/3
B=(+e -2 -A(Vs) - log|Vs])
v=(0+e-v2-A(Es)-log|Es|)

dmax(r, z)/ds(z) <1

(relative achieved profit)
max node load)

(
(max edge load)
E = max (

max demand/capacity)
TER,xERg

(

sum over R of squared

p— e r o 2
AX) Trex Z (Amax(r, @)/ dmax (r, =) max (total / single) alloc

r€ER

)

J

Worst-Case Analysis

B € O(e - maxyer [Vr| -

IR| - log |Vs])

v € O(e - maxyer |Er| - \/|R| - log|Es|)

18

XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)

Definition of Parameters

// perform preprocessing
compute optimal LP solution
do
| solution «+~ ROUNDINGPROCEDURE
while
not (e, 8,7)-approximate \

\\and roundingfries nof exceeded | J

-

a=1/3
B=(+e -2 -A(Vs) - log|Vs])
v=(0+e-v2-A(Es)-log|Es|)

dmax(r, z)/ds(z) <1

(relative achieved profit)
max node load)

(
(max edge load)
E = max (

max demand/capacity)
TER,xERg

(

sum over R of squared

p— e r o 2
AX) Trex Z (Amax(r, @)/ dmax (r, =) max (total / single) alloc

r€ER

)

J

Worst-Case Analysis

B € O(e - maxyer [Vr| -

IR| - log |Vs])

v € O(e - maxyer |Er| - \/|R| - log|Es|)

18

(5 5 S 0
Overview of XP-Approximation Results
Obj. Setiing Approximation lFactors / Runtime
o -5 Y=
o (VE|NR) 2 2 2 poly (X, e Vol - [Vs[2 (T +3)
<VE ‘ NRL> 2+ 2-ecsp 2+ 2-ecsp 2+ 2-ecsp | poly (ngR ‘VT|2 . (‘Vrl . ‘Vs|2'tw(7;)+2 aF timechp(Echp)))
Profit (VE|NR) 1/3 1 1 poly (3 ,er Vel - [V |*T)43)
(VE|NRL) | 1/(3+3-e1csp) 1+ eLcsp T+ecse | poly (3,er [Vil? - (IVi] - [VsP™ T2 1 timecsp(eicsp)))
» B =¢- \/2 -A(Vg) -log |Vs|, v =€ - \/2 - A(Vg) - log |V
> g1 csp > 0 must hold; timeycsp(eicsp) is polynomial in 1/e.csp (@and input)
N J

Derived Heuristics & Evaluation

Derived & Benchmark Heuristics

Derived Heuristics: Key Ideas

Benchmark Heuristics: WINE / VINE

» Goal: feasibility
» reactive: discard rounded mapping
upon violation
» proactive: forbid mappings violating
capacities and recompute LP

» Sample solutions
» Different request orders

» VINE - single request mapping
» uses randomized rounding to map
virtual nodes
» realizes edges via shortest paths

» WINE - offline adaptation
» greedy: process according to profit

20

Computational Evaluation: Setup

(7

Explorative Study - Vast Parameter Space

‘ . Treewidth: 1,2, 3, 4
Substrate: GEANT Number of requests: 40, 60, 80, 100
Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0

Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

| Instances per combination: 15)

(7

Requests
» #nodes uniformly chosen from {5,...,15}

» topology: random but with specific treewidth

> node mappings restricted to 10 nodes

f Code available:)
L https://github.com/vnep-approx/ J

21

https://github.com/vnep-approx/

Evaluation Results

[Investigate qualitative potential of randomized rounding heuristics. J

22

Evaluation Results

[Investigate qualitative potential of randomized rounding heuristics. J

(RRbest - WiNEbest)/LPUB [%]

24
0 4.0+ @05 @og @o@ 705 18
(O]
t W 2.0{10.6 160 28 12
o 6
3 1.01 8.2 18,7 080 0
o -6
_%, 0.5{=609 2.7 -8 -12
w - = o -18
0.25 81,4 -6.8 =1.4) |12

40 60 80 100
Number of Requests

22

Evaluation Results

[Investigate qualitative potential of randomized rounding heuristics. J

(RRpest - WiNEpest)/LPyg [%] Observations

24
4.01 0.8 4.8 68 7.8 18 | » overall 6.53% (rel.) improvement

(V)]
(O]
g 2.0110.6 '1Go0 p2alsl 5152 » outperforms WINE in > 99.9%:
@]
§ 1.01 8.2 19,7 N0 0 » ERFs 1.0, 2.0 and 80, 100 requests
-6 » performance increases with
s | 05{=6.9 2.7 9.8 7P
S #requests
0.25 =-n°4s =69 =1.4| || 18

40 60 80 100
Number of Requests

22

Evaluation Results

[Investigate qualitative potential of randomized rounding heuristics. }

(RRpest - WiNEpest)/LPyg [%] 5 Observations
4
4.01 0.8 4.8 68 7.8 18 | » overall 6.53% (rel.) improvement

PAORRI(OMGH 1061198 21.0 23.5 5152 » outperforms WINE in > 99.9%:
1.01 8.2 18,7 ERIZERE 0 » ERFs 1.0, 2.0 and 80, 100 requests
. o 0 . 0

-6 » performance increases with
0.5/=69 2.7 T8 188 || , |~ "
#requests

0.25 [8-184 6.8 1.4 |18
40 60 80 100 Efficiency - Total Heuristic Runtime 1

Number of Requests » < 200s for treewidths 1, 2, 3
(> < 1000s for treewidth 4

Edge Resources

22

Conclusion

Thesis Overview and Contributions

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations
» N'P-completeness in » Valid Mapping Problem » XP-time approximations
various settings » DYNVMP Algorithm » under all restrictions

» Fractional VNEP
» Column Generation LP

» Structural hardness
> VMP is NP-complete
» even planar requests Heuristics for Offline Profit VNEP and Evaluation

» no capacity violations » can consistently outperform heuristic

» profit and cost

23

Thesis Overview and Contributions

Virtual Network Embedding Problem

Computational Complexity

Problem Relaxations

Offline Approximations

» N'P-completeness in
various settings
» Structural hardness

> VMP is NP-complete
» even planar requests

» Valid Mapping Problem

» DYNVMP Algorithm
» Fractional VNEP

» Column Generation LP

» XP-time approximations
» under all restrictions

» profit and cost

Heuristics for Offline Profit VNEP and Evaluation

» no capacity violations » can consistently outperform heuristic

[Derived several novel theoretic results and showed applicability in practice.

23

Thesis Overview and Contributions

Virtual Network Embedding Problem

Computational Complexity

Problem Relaxations

Offline Approximations

» N'P-completeness in
various settings
» Structural hardness

> VMP is NP-complete
» even planar requests

» Valid Mapping Problem

» DYNVMP Algorithm
» Fractional VNEP

» Column Generation LP

» XP-time approximations
» under all restrictions

» profit and cost

Heuristics for Offline Profit VNEP and Evaluation

» no capacity violations » can consistently outperform heuristic

[Derived several novel theoretic results and showed applicability in practice.

Specific Embeddings & Embedding Models

Virtual Clusters

Temporal VNEP

» optimal algorithm for resource minimization

» hose-model ~ bandwidth reduction

» incorporation of scheduling aspects

» Mixed-Integer Programs to harness flexibility

23

	Virtual Networks
	Virtual Network Embeddings
	The Embedding Problem Zoo& Related Work
	Thesis Overview
	Computational Complexity of the VNEP
	Problem Relaxations
	Offline Approximation Algorithms
	Derived Heuristics & Evaluation
	Conclusion

