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[ Finding ‘sood’ embeddings is the core algorithmic challenge. J

Objectives

Online Setting — Request Sequence Offline Setting — Multiple Requests
» min. resource usage / costs » max. profit via admission control

» min. resource fragmentation » min. resource consumption
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The Embedding Problem Zoo & Related Work

[ Finding ‘good’ embeddings is the core algorithmic challenge. ]

Algorithmic Solution Approaches

quality guarantees
none NI optimality

heuristics approximations exact algorithms
polynomial FEaaISIa exponential
runtime

‘ quality guarantees + bounded runtime ~ predictable algorithm performance

[ Until now: only heuristics and exact algorithms known. ]
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\ Prime Goals |
1. Development of efficient approximation algorithms.

2. Bridge gap between theory and practice: efficient heuristics.

Virtual Network Embedding Problem

Computational Complexity Problem Relaxations Offline Approximations

» Study structural hardness and » Find appropriate tractable » Use relaxations to obtain first
inapproximability. model relaxations. approximations.

- IFIP Networking "18 (best paper) ‘ [ - IFIP Networking "18 - arXiv 18 - IEEE/ACM TON (minor rev.) - ACM CCR '19 J—

* IEEE/ACM TON (major rev. Heuristics for Offline Profit VNEP and Evaluation

» Derive heuristics and exploratively evaluate performance.

Specific Embeddings & Embedding Models

(-ACM CcR 5| (- IE€E 1PDPS "4 |
Virtual Clusters Temporal VNEP
» Study problem and optimize resource usage. » Identify ways to harness temporal flexibilities.
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Reminder: 3-SAT and N'P-Completeness

3-SAT-Formula ¢

¢ = N¢,ec, Ci With C; € Cg being disjunctions of at most 3 literals.

Example 3-SAT formula ¢ over literals £, = {21, 22, 23, 24}

(
L
{
|

(ﬁz(1‘1\/332\/:133)/\(:?1Vw2Vl’4)/\(l’2Vi‘3\/ZI)4)

- /
-~

C G Cs

) R A NS




Reminder: 3-SAT and N'P-Completeness

3-SAT-Formula ¢
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Definition of 3-SAT

Decision Problems
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[
|

Decide whether formula ¢ can be satisfied.

]
J

[
i

Output is ‘yes’ or ‘no’,

)




Reminder: 3-SAT and N'P-Completeness

( 3-SAT-Formula ¢ W
L ¢ = N¢,ec, Ci With C; € Cg being disjunctions of at most 3 literals. J
( Example 3-SAT formula ¢ over literals £, = {21, 22, 23, 24} 1
¢ = (1‘1 \/£E2V:L"3)/\(:E1 V$2Vl’4)/\ (l’z\/i‘3\/l‘4)
C G Cs
[ Definition of 3-SAT |( Decision Problems |

Decide whether formula ¢ can be satisfied. jt Output is ‘yes’ or ‘no’. J

( Theorem: Karp [1972] W
| 3-SAT is A/P-complete. |
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Our Reduction Framework

[Input: 3-SAT formula ¢ = (.’L‘q VaxV 333) VAN (531 VayV $4) VAN (xz V3V $4)

( 7

Request G, (¢)

» one virtual node per clause

represent satisfying assignments 2. xa  TTF

» 7 substrate nodes per clause: -

» edges as for request,
only when assignments agree




Complete Picture

o: (21 V @2 V T3) A (F1V 22 V 34) A (w2 V T3 V 24)

Grig): O " \2/ ------ —B(

v T, T9, x4 : TTT — To, 23,24 1 TTT
‘,; oo e 1T

/

Gs(9):

Lo, 23,24 : FTT

1,29, 24 : FFF o, 23,24 : FFF
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Our Reduction Framework

Outline of Reduction Framework

3-SAT instance ¢ VNEP instance (G,.g), Gs(4), restrictions)

¢ satisfiable? — > feasible embedding of G,.4) on G, under restrictions?

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, ) on Ggg), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

. J




Computational Complexity Results

r

~

Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, ) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

J

( . » . . . . 7
Theorem: Decision VNEP is N’P-complete under node placement and routing restrictions
Proof: via application of base lemma.

. J

11
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Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, on Ggg), St.
(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
\(2) all virtual edges are mapped on exactly one substrate edge.

J

(Theorem: Decision VNEP is NP-complete under node placement and routing restrictions |

[ Node placement restrictions enforce (1) )
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Base Lemma
Formula ¢ is satisfiable if and only if there exists a mapping of G, on Ggg), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

J

(Theorem: Decision VNEP is NP-complete under node placement and routing restrictions |

[ Node placement restrictions enforce (1) 1 ( Routing restrictions enforce (2)

1l
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[ Base Lemma )
Formula ¢ is satisfiable if and only if there exists a mapping of G, ) on Gg(g), St.

(1) each virtual node v; is mapped to a (satisfying) substrate node of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

[Theorem: Decision VNEP is N"P-complete under node placement and routing restrictions J

What about other restrictions?
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Computational Complexity Results

» Finding a feasible embedding is in general not possible in polynomial-time?.

» The VNEP is inapproximable under any objective even for a single request?.

» Computing valid mappings is already hard!
9unless P =NP holds

(. J

(Additional Inapproximability Results
» Intractability even for approximate solutions when relaxing either
» node capacities or latencies by factor 2 — ¢, or
» edge capacities by factor logn/loglogn, with n = number of substrate nodes 9.

‘unless NP C BP-TIME( 5, n %18 ™)

. J

11
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Relaxation: Valid Mappings

r

VNEP is N’P-complete under ...
Node Restrictions  Edge Restrictions

: & :
placement & routing
placement & latencies
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Relaxation: Valid Mappings

r

VNEP is N’P-complete under ...
Node Restrictions  Edge Restrictions

: & : Validity restrictions are non-negotiable.
placement & routing
placement & latencies
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( VNEP is N’P-complete under ... W f Focus )
{ Node Restrictions  Edge Restrictions J Computing valid mappings under node J

placement & routing placement and routing restrictions.
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Relaxation: Valid Mappings

( VNEP is N’P-complete under ... W f Focus )
{ Node Restrictions  Edge Restrictions J Computing valid mappings under node J

placement & routing placement and routing restrictions.

Request r Valid Mappings M, = {m!,m2 m3,...}
7

Valid mappings do not necessarily respect capacity constraints!

12



Relaxation: Valid Mappings

( Valid Mapping Problem (VMP) 1 f Focus )
Find valid mapping m, € M, of least cost: Computing valid mappings under node
cs(my) =D peq cs(@) - A(my, ) placement and routing restrictions.

Request r Valid Mappings M, = {m!,m2,m3, ..}

Valid mappings do not necessarily respect capacity constraints!

12
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[ DYNVMP algorithm: solve VMP via dynamic programming. ]
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Solving the Valid Mapping Problem: DYNVMP Intuition

[ DYNVMP algorithm: solve VMP via dynamic programming. J

Start with simplest request: single edge.

13
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Tree Decomposition the treewidth tw(T,).

Runtime is exponential in max. bag size: J
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Excursion: Tree Decompositions and Treewidth

L» Important concept in theoretical computer science — parametrized complexity theory J

» Finding tree decomposition of minimal width is A"P-hard but fixed-parameter tractable.

VM,
Graph Class Treewidth Graph \ NAT 'IEHVM
trees 1 Customer /\ Fw Internet VM.;’}\VM,|
cacti ) Backend;  Backend, '
series-parallel 2 Bags
(1-)outerplanar 2
k-outerplanar k+1 _
Tree
planar unbounded A\ et

Important request topologies have small treewidth.
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The XP-runtime is bounded by O(|V;2 - (|V;] - [Vs|2™(T)42 1 time csp(eLcsp))).-

J

Important Observation
» The VNEP reduces to the VMP, when any valid mapping is also feasible.

» DYNVMP solves the online VNEP optimally / approximatively in this setting.

Key Application: Solving the Fractional Offline VNEP
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Solving the Fractional Offline VNEP

[ Next Relaxation: allowing convex combinations of valid mappings j
Fractional Offline VNEP: Linear Program (LP) for Profit
» Selection of k-th mapping: fEelo,1] vr e R,mk e M, (1)
» Select at most ‘one’ mapping: > gk VreR (2)
mkeM,.
» Enforce capacities: S > A(mi,z)- fi<ds(z)  VzeGs (3)
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» Maximize the profit: max Z Z B o i (z)
TER mkeM,
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Fractional Offline VNEP: Linear Program (LP) for Profit

» Selection of k-th mapping: fkelo,1) Vre R,mF e M, (1)
» Select at most ‘one’ mapping: Z k<1 VreR (2)
mkeM,
» Enforce capacities: > > A(mf,z)- fi<ds(z)  VzeGs (3)
TER mrkeM,
» Maximize the profit: max Z Z by - fF (z)
rTER mkeM,
. J

XP-Tractable via Column Generation
» Dual LP has finitely many variables but exponential number of constraints.

» Dual constraints can be separated using DYNVMP algorithm.
~ runtime O (poly (3, cx [V5 [ - [Vs[2®™(7)+3)) due to Grotschel et al. [1988]
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Randomized Rounding: Intuition

Example
( Substrate Network ] ( Requestri: 100€ | [ Request r,: 50€
072 o7
=
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17



Randomized Rounding: Intuition

( 7

Example
e R
Substrate Network [ Requestr:100€ | [ Requestr: 50€
2 0
[
e 10/0] ol L J L |

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

: W (f2: 5Mf22: 0;161(

Py J

ey




Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

|

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input :LP solution
foreach r € R do

| choose m* with probability f*
end

- J

17



Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r; (profit: 100€) Variables of r, (profit: 50€)

2 |

Idea: Treat weights as probabilities! Rounding Outcomes

Iter. Req.1 Req.2 Profit maxLoad J

Algorithm: RoundingProcedure
Input :LP solution
foreach r € R do

| choose m* with probability f*
end

) — —

- J

17



Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of r, (profit: 50€) Variables of r, (profit: 50€)
(fi=05]( =03 ][ ff=02)

GO

Idea: Treat weights as probabilities!

)

Rounding Outcomes

Algorithm: RoundingProcedure Iter. Req; 1 Reqéz Profit  max Load
Input : LP solution 1 m m Lats 2007

foreach r € R do
| choose m* with probability f*
end

- J

17



Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)
(fi=05]( =03 ][ ff=02)

GO

Idea: Treat weights as probabilities! ( Rounding Outcomes 1
Algorithm: RoundingProcedure lter. Req.1 Req.2 Profit maxLoad
. 1 m] ma 150€ 200%
Input : LP solution ; 2 .
foreach r € R do 2 ™ 0 100€ 100%
| choose m* with probability f*
end

- J

17



Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)

Idea: Treat weights as probabilities! Rounding Outcomes
Algorithm: RoundingProcedure lter. Req.1 Req.2 Profit max Load

. 1 m] ma 150€ 200%

Input : LP solution ; 2 .

foreach r € R do 2 ™ ¢ 100€ 100%

1 1 [

| choose m* with probability f* 3 m e 150€ - 200%
end I\ -

- J

17



Randomized Rounding: Intuition

Example Solution to Linear Program: Profit 133€

Variables of request 1 Variables of r, (profit: 50€)
(fi=05]( =03 f2=02) (f=o05]([B=016][ =0 ]

o

Idea: Treat weights as probabilities! Rounding Outcomes
Iter. Req.1 Req.2 Profit maxLoad

Algorithm: RoundingProcedure

1 2 [¢)

Input : LP solution 1 m; mj 150€ 2000/)

foreach » € R do 2 m; 0 100€ 100%
1 1

| choose m! with probability f* 3 £ m,  150€  200%

end 4 m? m) 150€ 200%

- J
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Example Solution to Linear Program: Profit 133€

Variables of request 1
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|

Idea: Treat weights as probabilities!

Rounding Outcomes

Algorithm: RoundingProcedure

Input : LP solution

foreach r € R do
| choose m* with probability f*
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XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
do
| solution «+— ROUNDINGPROCEDURE
while
not (a, 3,7)-approximate \

\\and roundingfries nof exceeded | J

Algorithm: RoundingProcedure
Input : LP solution
foreach r € R do

| choose m¥ with probability f*
end
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XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit [ Proof via Chernoff & Hoeffding bounds. j

// perform preprocessing
compute optimal LP solution

do
| solution <~ ROUNDINGPROCEDURE

while
( not (a, 8,7)-approximate \

Main Theorem: (XP-)Approximation for the Virtual Network Embedding Problem 1
The Algorithm returns («, 8,7)-approximate solutions of at least an « fraction of the
optimal profit, and allocations on nodes and edges within factors of 8 and ~ of the
\original capacities, respectively, with high probability.

18



XP-Approximation Algorithms

Algorithm: VNEP Approximation (Profit) Definition of Parameters -
5 a=1/3 (relative achieved profit)
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\ .solut|on < ROUNDINGPROCEDURE T
while reR,c€Rg

( not (a, 8,7)-approximate \

= max (total / single) alloc

R of d
\ ST fres anF evresded | A(X>=;n€a§2(Amaxv,z)/dmax(r,z))z<S“mov‘” o sduare )

(. J
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( 5 5 S 0
Overview of XP-Approximation Results
Obj. Setiing Approximation lFactors / Runtime
o -5 Y=
o (VE|NR) 2 2 2 poly (X, e Vol - [Vs[2 (T +3)
<VE ‘ NRL> 2+ 2-ecsp 2+ 2-ecsp 2+ 2-ecsp | poly (ngR ‘VT|2 . (‘Vrl . ‘Vs|2'tw(7;)+2 aF timechp(Echp)))
Profit (VE|NR) 1/3 1 1 poly (3 ,er Vel - [V |*T)43)
(VE|NRL) | 1/(3+3-e1csp) 1+ eLcsp T+ecse | poly (3,er [Vil? - (IVi] - [VsP™ T2 1 timecsp(eicsp)))
» B =¢- \/2 -A(Vg) -log |Vs|, v =€ - \/2 - A(Vg) - log |V
> g1 csp > 0 must hold; timeycsp(eicsp) is polynomial in 1/e.csp (@and input)
N J




Derived Heuristics & Evaluation




Derived & Benchmark Heuristics

Derived Heuristics: Key Ideas

Benchmark Heuristics: WINE / VINE

» Goal: feasibility
» reactive: discard rounded mapping
upon violation
» proactive: forbid mappings violating
capacities and recompute LP

» Sample solutions
» Different request orders

» VINE - single request mapping
» uses randomized rounding to map
virtual nodes
» realizes edges via shortest paths

» WINE - offline adaptation
» greedy: process according to profit

20



Computational Evaluation: Setup

( 7

Explorative Study - Vast Parameter Space

‘ . Treewidth: 1,2, 3, 4
Substrate: GEANT Number of requests: 40, 60, 80, 100
Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0

Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

| Instances per combination: 15 )

( 7

Requests
» #nodes uniformly chosen from {5,...,15}

» topology: random but with specific treewidth

> node mappings restricted to 10 nodes

f Code available: )
L https://github.com/vnep-approx/ J

21
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Evaluation Results

[ Investigate qualitative potential of randomized rounding heuristics. J
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. o 0 . 0
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0.5/=69 2.7 T8 188 || , |~ "
#requests
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» Valid Mapping Problem

» DYNVMP Algorithm
» Fractional VNEP

» Column Generation LP

» XP-time approximations
» under all restrictions

» profit and cost

Heuristics for Offline Profit VNEP and Evaluation

» no capacity violations » can consistently outperform heuristic

[ Derived several novel theoretic results and showed applicability in practice.

Specific Embeddings & Embedding Models

Virtual Clusters

Temporal VNEP

» optimal algorithm for resource minimization

» hose-model ~ bandwidth reduction

» incorporation of scheduling aspects

» Mixed-Integer Programs to harness flexibility
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